def Evaluate_Result(homedir='.', tProb_=None, lag_time=1, microstate_mapping_=None, MacroAssignments_=None, name=None): MacroMSM = MarkovStateModel(lag_time=lag_time) MacroMSM.fit(MacroAssignments_) Macro_tProb_ = MacroMSM.tProb_ Macro_tCount_ = MacroMSM.tCount_ #plot_matrix(labels=None, tProb_=tProb_, name=name) #Calculate metastablilty print "Calculating Metastablilty and Modularity..." metastability = Macro_tProb_.diagonal().sum() metastability /= len(Macro_tProb_) print "Metastability:", metastability #Calculate modularity micro_tProb_ = tProb_ degree = micro_tProb_.sum(axis=1) #row sum of tProb_ matrix total_degree = degree.sum() modularity = 0.0 len_mapping = len(microstate_mapping_) for i in xrange(len_mapping): state_i = microstate_mapping_[i] for j in xrange(len_mapping): state_j = microstate_mapping_[j] if state_i == state_j: modularity += micro_tProb_[ i, j] - degree[i] * degree[j] / total_degree modularity /= total_degree print "Modularity:", modularity Macro_tCountDir = homedir + "/" + name + "Macro_tCounts.mtx" Macro_tProbDir = homedir + "/" + name + "Macro_tProb.mtx" Metastability_Modularity_Dir = homedir + "/" + name + "Metastability_Modularity.txt" np.savetxt(Metastability_Modularity_Dir, [metastability, modularity], fmt="%lf") scipy.io.mmwrite(Macro_tCountDir, scipy.sparse.csr_matrix(Macro_tCount_), field='integer') scipy.io.mmwrite(Macro_tProbDir, scipy.sparse.csr_matrix(Macro_tProb_)) #Plot tProb matrix plot_matrix(tProb_=Macro_tProb_, name=name)
def Evaluate_Result(homedir='.', tProb_=None, lag_time=1, microstate_mapping_=None, MacroAssignments_=None, name=None): MacroMSM = MarkovStateModel(lag_time=lag_time) MacroMSM.fit(MacroAssignments_) Macro_tProb_ = MacroMSM.tProb_ Macro_tCount_ = MacroMSM.tCount_ #plot_matrix(labels=None, tProb_=tProb_, name=name) #Calculate metastablilty print "Calculating Metastablilty and Modularity..." metastability = Macro_tProb_.diagonal().sum() metastability /= len(Macro_tProb_) print "Metastability:", metastability #Calculate modularity micro_tProb_ = tProb_ degree = micro_tProb_.sum(axis=1) #row sum of tProb_ matrix total_degree = degree.sum() modularity = 0.0 len_mapping = len(microstate_mapping_) for i in xrange(len_mapping): state_i = microstate_mapping_[i] for j in xrange(len_mapping): state_j = microstate_mapping_[j] if state_i == state_j: modularity += micro_tProb_[i, j] - degree[i]*degree[j]/total_degree modularity /= total_degree print "Modularity:", modularity Macro_tCountDir = homedir + "/" + name + "Macro_tCounts.mtx" Macro_tProbDir = homedir + "/" + name + "Macro_tProb.mtx" Metastability_Modularity_Dir = homedir + "/" + name + "Metastability_Modularity.txt" np.savetxt(Metastability_Modularity_Dir, [metastability, modularity], fmt="%lf") scipy.io.mmwrite(Macro_tCountDir, scipy.sparse.csr_matrix(Macro_tCount_), field='integer') scipy.io.mmwrite(Macro_tProbDir, scipy.sparse.csr_matrix(Macro_tProb_)) #Plot tProb matrix plot_matrix(tProb_=Macro_tProb_, name=name)
import os,sys import numpy as np import scipy.io HK_DataMiner_Path = os.path.relpath(os.pardir) #HK_DataMiner_Path = os.path.abspath("/home/stephen/Dropbox/projects/work-2015.5/HK_DataMiner/") sys.path.append(HK_DataMiner_Path) from utils import plot_matrix, plot_block_matrix from msm import MarkovStateModel import argparse cli = argparse.ArgumentParser() cli.add_argument('-c', '--assignments_dir', type=str) cli.add_argument('-p', '--tProb', type=str, default=None) args = cli.parse_args() assignments_dir = args.assignments_dir tProb_dir = args.tProb labels = np.loadtxt(assignments_dir, dtype=np.int32) if tProb_dir is not None: tProb_ = scipy.io.mmread(tProb_dir) #plot_matrix(labels=labels, tProb_=tProb_, name='Matrix') plot_block_matrix(labels=labels, tProb_=tProb_, name='BlockMatrix') else: MSM = MarkovStateModel(lag_time=1) MSM.fit(labels) tProb_ = MSM.tProb_ #plot_matrix(labels=None, tProb_=tProb_, name='Matrix') plot_block_matrix(labels=labels, tProb_=tProb_, name='BlockMatrix')