def test(self): args, metric = Cluster.parser.parse_args([ '-p', get('points_on_cube/ProjectInfo.yaml', just_filename=True), '-o', self.td, 'rmsd', '-a', get('points_on_cube/AtomIndices.dat', just_filename=True), 'hybrid', '-k', '4'], print_banner=False) Cluster.main(args, metric)
def test(self): args, metric = Cluster.parser.parse_args([ '-p', get('ProjectInfo.yaml', just_filename=True), '-s', '10', '-o', self.td, 'rmsd', '-a', get('AtomIndices.dat', just_filename=True), 'hierarchical'], print_banner=False) Cluster.main(args, metric) eq(load(pjoin(self.td, 'ZMatrix.h5')), get('ZMatrix.h5'))
def test(self): args, metric = Cluster.parser.parse_args([ '-p', get('ProjectInfo.yaml', just_filename=True), '-o', self.td, 'rmsd', '-a', get('AtomIndices.dat', just_filename=True), 'kcenters', '-k', '100'], print_banner=False) Cluster.main(args, metric) eq(load(pjoin(self.td, 'Assignments.h5')), get('Assignments.h5')) eq(load(pjoin(self.td, 'Assignments.h5.distances')), get('Assignments.h5.distances')) eq(load(pjoin(self.td, 'Gens.lh5')), get('Gens.lh5'))
def test(self): args, metric = Cluster.parser.parse_args([ '-p', get('points_on_cube/ProjectInfo.yaml', just_filename=True), '-o', self.td, 'rmsd', '-a', get('points_on_cube/AtomIndices.dat', just_filename=True), 'kcenters', '-k', '4'], print_banner=False) Cluster.main(args, metric) assignments = load(pjoin(self.td, 'Assignments.h5'))["arr_0"] assignment_counts = np.bincount(assignments.flatten()) eq(assignment_counts, np.array([2, 2, 2, 2])) distances = load(pjoin(self.td, 'Assignments.h5.distances'))["arr_0"] eq(distances, np.zeros((1,8)))
def test(self): try: import fastcluster except ImportError: raise nose.SkipTest("Cannot find fastcluster, so skipping hierarchical clustering test.") args, metric = Cluster.parser.parse_args([ '-p', get('ProjectInfo.yaml', just_filename=True), '-s', '10', '-o', self.td, 'rmsd', '-a', get('AtomIndices.dat', just_filename=True), 'hierarchical'], print_banner=False) Cluster.main(args, metric) eq(load(pjoin(self.td, 'ZMatrix.h5')), get('ZMatrix.h5'))
def test(self): if os.getenv('TRAVIS', None) == 'true': raise nose.SkipTest('Skipping test_Assign on TRAVIS') try: import fastcluster except ImportError: raise nose.SkipTest("Cannot find fastcluster, so skipping hierarchical clustering test.") args, metric = Cluster.parser.parse_args([ '-p', get('ProjectInfo.yaml', just_filename=True), '-s', '10', '-o', self.td, 'rmsd', '-a', get('AtomIndices.dat', just_filename=True), 'hierarchical'], print_banner=False) Cluster.main(args, metric) eq(load(pjoin(self.td, 'ZMatrix.h5')), get('ZMatrix.h5'))