def setUp(self): p = np.zeros(10) q = np.zeros(10) p[0:-1] = 0.5 q[1:] = 0.5 p[4] = 0.01 q[6] = 0.1 self.bdc = BirthDeathChain(q, p) self.mu = self.bdc.stationary_distribution() self.T = self.bdc.transition_matrix() """Test matrix-vector product against spectral decomposition""" R, D, L = rdl_decomposition(self.T) self.L = L self.R = R self.ts = timescales(self.T) self.times = np.array([1, 5, 10, 20, 100]) ev = np.diagonal(D) self.ev_t = ev[np.newaxis, :]**self.times[:, np.newaxis] self.k = 4 """Observable""" obs1 = np.zeros(10) obs1[0] = 1 obs1[1] = 1 self.obs = obs1 """Initial distribution""" w0 = np.zeros(10) w0[0:4] = 0.25 self.p0 = w0
def setUp(self): p = np.zeros(10) q = np.zeros(10) p[0:-1] = 0.5 q[1:] = 0.5 p[4] = 0.01 q[6] = 0.1 self.bdc = BirthDeathChain(q, p) self.mu = self.bdc.stationary_distribution() self.T = self.bdc.transition_matrix() R, D, L = rdl_decomposition(self.T, norm='reversible') self.L = L self.R = R self.ts = timescales(self.T) self.times = np.array([1, 5, 10, 20, 100]) ev = np.diagonal(D) self.ev_t = ev[np.newaxis, :]**self.times[:, np.newaxis] self.k = 4 obs1 = np.zeros(10) obs1[0] = 1 obs1[1] = 1 obs2 = np.zeros(10) obs2[8] = 1 obs2[9] = 1 self.obs1 = obs1 self.obs2 = obs2 self.one_vec = np.ones(10)
def test_timescales_2(self): """Eigenvalues with non-zero imaginary part""" ts = np.array([np.inf, 0.971044, 0.971044]) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") tsn = timescales(0.5 * self.T + 0.5 * self.P) assert_allclose(tsn, ts) assert issubclass(w[-1].category, ImaginaryEigenValueWarning)
def test_timescales_1(self): """Multiple eigenvalues of magnitude one, eigenvalues with non-zero imaginary part""" ts = np.array([np.inf, np.inf]) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") tsn = timescales(self.W) assert_allclose(tsn, ts) assert issubclass(w[-1].category, SpectralWarning)
def test_timescales(self): P = self.bdc.transition_matrix() ev = eigvals(P) """Sort with decreasing magnitude""" ev = ev[np.argsort(np.abs(ev))[::-1]] ts = -1.0 / np.log(np.abs(ev)) """k=None""" tsn = timescales(P) assert_allclose(ts[1:], tsn[1:]) """k is not None""" tsn = timescales(P, k=self.k) assert_allclose(ts[1:self.k], tsn[1:]) """tau=7""" """k=None""" tsn = timescales(P, tau=7) assert_allclose(7 * ts[1:], tsn[1:]) """k is not None""" tsn = timescales(P, k=self.k, tau=7) assert_allclose(7 * ts[1:self.k], tsn[1:])
def setUp(self): p = np.zeros(10) q = np.zeros(10) p[0:-1] = 0.5 q[1:] = 0.5 p[4] = 0.01 q[6] = 0.1 self.bdc = BirthDeathChain(q, p) self.mu = self.bdc.stationary_distribution() self.T = self.bdc.transition_matrix() R, D, L = rdl_decomposition(self.T) self.L = L self.R = R self.ts = timescales(self.T) self.times = np.array([1, 5, 10, 20]) ev = np.diagonal(D) self.ev_t = ev[np.newaxis, :]**self.times[:, np.newaxis] self.k = 4 self.tau = 7.5 """Observables""" obs1 = np.zeros(10) obs1[0] = 1 obs1[1] = 1 obs2 = np.zeros(10) obs2[8] = 1 obs2[9] = 1 self.obs1 = obs1 self.obs2 = obs2 """Initial vector for relaxation""" w0 = np.zeros(10) w0[0:4] = 0.25 self.p0 = w0