def computePCsPython(out_dir,k,bfile,ffile): """ reading in """ RV = plink_reader.readBED(bfile,useMAFencoding=True) X = RV['snps'] """ normalizing markers """ print 'Normalizing SNPs...' p_ref = X.mean(axis=0)/2. X -= 2*p_ref with warnings.catch_warnings(): warnings.simplefilter("ignore") X /= SP.sqrt(2*p_ref*(1-p_ref)) hasNan = SP.any(SP.isnan(X),axis=0) print '%d SNPs have a nan entry. Exluding them for computing the covariance matrix.'%hasNan.sum() X = X[:,~hasNan] """ computing prinicipal components """ U,S,Vt = SSL.svds(X,k=k) U -= U.mean(0) U /= U.std(0) U = U[:,::-1] """ saving to output """ NP.savetxt(ffile, U, delimiter='\t',fmt='%.6f')
def getRegion(self, size=3e4, min_nSNPs=1, chrom_i=None, pos_min=None, pos_max=None): """ Sample a region from the piece of genotype X, chrom, pos minSNPnum: minimum number of SNPs contained in the region Ichrom: restrict X to chromosome Ichrom before taking the region cis: bool vector that marks the sorted region region: vector that contains chrom and init and final position of the region """ bim = plink_reader.readBIM(self.bfile, usecols=(0, 1, 2, 3)) chrom = SP.array(bim[:, 0], dtype=int) pos = SP.array(bim[:, 3], dtype=int) if chrom_i is None: n_chroms = chrom.max() chrom_i = int(SP.ceil(SP.rand() * n_chroms)) pos = pos[chrom == chrom_i] chrom = chrom[chrom == chrom_i] ipos = SP.ones(len(pos), dtype=bool) if pos_min is not None: ipos = SP.logical_and(ipos, pos_min < pos) if pos_max is not None: ipos = SP.logical_and(ipos, pos < pos_max) pos = pos[ipos] chrom = chrom[ipos] if size == 1: # select single SNP idx = int(SP.ceil(pos.shape[0] * SP.rand())) cis = SP.arange(pos.shape[0]) == idx region = SP.array([chrom_i, pos[idx], pos[idx]]) else: while 1: idx = int(SP.floor(pos.shape[0] * SP.rand())) posT1 = pos[idx] posT2 = pos[idx] + size if posT2 <= pos.max(): cis = chrom == chrom_i cis *= (pos > posT1) * (pos < posT2) if cis.sum() > min_nSNPs: break region = SP.array([chrom_i, posT1, posT2]) start = SP.nonzero(cis)[0].min() nSNPs = cis.sum() rv = plink_reader.readBED(self.bfile, useMAFencoding=True, start=start, nSNPs=nSNPs, bim=bim) Xr = rv['snps'] return Xr, region
def scan(bfile,Y,cov,null,wnds,minSnps,i0,i1,perm_i,resfile,F): if perm_i is not None: print 'Generating permutation (permutation %d)'%perm_i NP.random.seed(perm_i) perm = NP.random.permutation(Y.shape[0]) mtSet = MTST.MultiTraitSetTest(Y,S_XX=cov['eval'],U_XX=cov['evec'],F=F) mtSet.setNull(null) bim = plink_reader.readBIM(bfile,usecols=(0,1,2,3)) fam = plink_reader.readFAM(bfile,usecols=(0,1)) print 'fitting model' wnd_file = csv.writer(open(resfile,'wb'),delimiter='\t') for wnd_i in range(i0,i1): print '.. window %d - (%d, %d-%d) - %d snps'%(wnd_i,int(wnds[wnd_i,1]),int(wnds[wnd_i,2]),int(wnds[wnd_i,3]),int(wnds[wnd_i,-1])) if int(wnds[wnd_i,-1])<minSnps: print 'SKIPPED: number of snps lower than minSnps' continue #RV = bed.read(PositionRange(int(wnds[wnd_i,-2]),int(wnds[wnd_i,-1]))) RV = plink_reader.readBED(bfile, useMAFencoding=True, blocksize = 1, start = int(wnds[wnd_i,4]), nSNPs = int(wnds[wnd_i,5]), order = 'F',standardizeSNPs=False,ipos = 2,bim=bim,fam=fam) Xr = RV['snps'] if perm_i is not None: Xr = Xr[perm,:] rv = mtSet.optimize(Xr) line = NP.concatenate([wnds[wnd_i,:],rv['LLR']]) wnd_file.writerow(line) pass
def getRegion(self, size=3e4, min_nSNPs=1, chrom_i=None, pos_min=None, pos_max=None): """ Sample a region from the piece of genotype X, chrom, pos minSNPnum: minimum number of SNPs contained in the region Ichrom: restrict X to chromosome Ichrom before taking the region cis: bool vector that marks the sorted region region: vector that contains chrom and init and final position of the region """ bim = plink_reader.readBIM(self.bfile, usecols=(0, 1, 2, 3)) chrom = SP.array(bim[:, 0], dtype=int) pos = SP.array(bim[:, 3], dtype=int) if chrom_i is None: n_chroms = chrom.max() chrom_i = int(SP.ceil(SP.rand() * n_chroms)) pos = pos[chrom == chrom_i] chrom = chrom[chrom == chrom_i] ipos = SP.ones(len(pos), dtype=bool) if pos_min is not None: ipos = SP.logical_and(ipos, pos_min < pos) if pos_max is not None: ipos = SP.logical_and(ipos, pos < pos_max) pos = pos[ipos] chrom = chrom[ipos] if size == 1: # select single SNP idx = int(SP.ceil(pos.shape[0] * SP.rand())) cis = SP.arange(pos.shape[0]) == idx region = SP.array([chrom_i, pos[idx], pos[idx]]) else: while 1: idx = int(SP.floor(pos.shape[0] * SP.rand())) posT1 = pos[idx] posT2 = pos[idx] + size if posT2 <= pos.max(): cis = chrom == chrom_i cis *= (pos > posT1) * (pos < posT2) if cis.sum() > min_nSNPs: break region = SP.array([chrom_i, posT1, posT2]) start = SP.nonzero(cis)[0].min() nSNPs = cis.sum() rv = plink_reader.readBED(self.bfile, useMAFencoding=True, start=start, nSNPs=nSNPs, bim=bim) Xr = rv["snps"] return Xr, region
def _genBgTerm_fromSNPs(self, vTot=0.5, vCommon=0.1, pCausal=0.5, plot=False): """ generate """ print 'Reading in all SNPs. This is slow.' rv = plink_reader.readBED(self.bfile, useMAFencoding=True) X = rv['snps'] S = X.shape[1] vSpecific = vTot - vCommon # select causal SNPs nCausal = int(SP.floor(pCausal * S)) Ic = selectRnd(nCausal, S) X = X[:, Ic] # common effect Bc = SP.kron(SP.randn(nCausal, 1), SP.randn(1, self.P)) Yc = SP.dot(X, Bc) Yc *= SP.sqrt(vCommon / Yc.var(0).mean()) # indipendent effect Bi = SP.randn(nCausal, self.P) Yi = SP.dot(X, Bi) Yi *= SP.sqrt(vSpecific / Yi.var(0).mean()) if plot: import pylab as PL PL.ion() for p in range(self.P): PL.subplot(self.P, 1, p + 1) PL.plot(SP.arange(self.X.shape[1])[Ic], Bc[:, p], 'o', color='y', alpha=0.05) PL.plot(SP.arange(self.X.shape[1])[Ic], Bi[:, p], 'o', color='r', alpha=0.05) #PL.ylim(-2,2) PL.plot([0, Ic.shape[0]], [0, 0], 'k') return Yc, Yi
def scan(bfile, Y, cov, null, wnds, minSnps, i0, i1, perm_i, resfile, F): if perm_i is not None: print 'Generating permutation (permutation %d)' % perm_i NP.random.seed(perm_i) perm = NP.random.permutation(Y.shape[0]) mtSet = MTST.MultiTraitSetTest(Y, S_XX=cov['eval'], U_XX=cov['evec'], F=F) mtSet.setNull(null) bim = plink_reader.readBIM(bfile, usecols=(0, 1, 2, 3)) fam = plink_reader.readFAM(bfile, usecols=(0, 1)) print 'fitting model' wnd_file = csv.writer(open(resfile, 'wb'), delimiter='\t') for wnd_i in range(i0, i1): print '.. window %d - (%d, %d-%d) - %d snps' % ( wnd_i, int(wnds[wnd_i, 1]), int(wnds[wnd_i, 2]), int( wnds[wnd_i, 3]), int(wnds[wnd_i, -1])) if int(wnds[wnd_i, -1]) < minSnps: print 'SKIPPED: number of snps lower than minSnps' continue #RV = bed.read(PositionRange(int(wnds[wnd_i,-2]),int(wnds[wnd_i,-1]))) RV = plink_reader.readBED(bfile, useMAFencoding=True, blocksize=1, start=int(wnds[wnd_i, 4]), nSNPs=int(wnds[wnd_i, 5]), order='F', standardizeSNPs=False, ipos=2, bim=bim, fam=fam) Xr = RV['snps'] if perm_i is not None: Xr = Xr[perm, :] rv = mtSet.optimize(Xr) line = NP.concatenate([wnds[wnd_i, :], rv['LLR']]) wnd_file.writerow(line) pass
def computeCovarianceMatrixPython(out_dir,bfile,cfile,sim_type='RRM'): print "Using python to create covariance matrix. This might be slow. We recommend using plink instead." if sim_type is not 'RRM': raise Exception('sim_type %s is not known'%sim_type) """ loading data """ data = plink_reader.readBED(bfile,useMAFencoding=True) iid = data['iid'] X = data['snps'] N = X.shape[1] print '%d variants loaded.'%N print '%d people loaded.'%X.shape[0] """ normalizing markers """ print 'Normalizing SNPs...' p_ref = X.mean(axis=0)/2. X -= 2*p_ref with warnings.catch_warnings(): warnings.simplefilter("ignore") X /= SP.sqrt(2*p_ref*(1-p_ref)) hasNan = SP.any(SP.isnan(X),axis=0) print '%d SNPs have a nan entry. Exluding them for computing the covariance matrix.'%hasNan.sum() """ computing covariance matrix """ print 'Computing relationship matrix...' K = SP.dot(X[:,~hasNan],X[:,~hasNan].T) K/= 1.*N print 'Relationship matrix calculation complete' print 'Relationship matrix written to %s.cov.'%cfile print 'IDs written to %s.cov.id.'%cfile """ saving to output """ NP.savetxt(cfile + '.cov', K, delimiter='\t',fmt='%.6f') NP.savetxt(cfile + '.cov.id', iid, delimiter=' ',fmt='%s')
def _genBgTerm_fromSNPs(self, vTot=0.5, vCommon=0.1, pCausal=0.5, plot=False): """ generate """ print "Reading in all SNPs. This is slow." rv = plink_reader.readBED(self.bfile, useMAFencoding=True) X = rv["snps"] S = X.shape[1] vSpecific = vTot - vCommon # select causal SNPs nCausal = int(SP.floor(pCausal * S)) Ic = selectRnd(nCausal, S) X = X[:, Ic] # common effect Bc = SP.kron(SP.randn(nCausal, 1), SP.randn(1, self.P)) Yc = SP.dot(X, Bc) Yc *= SP.sqrt(vCommon / Yc.var(0).mean()) # indipendent effect Bi = SP.randn(nCausal, self.P) Yi = SP.dot(X, Bi) Yi *= SP.sqrt(vSpecific / Yi.var(0).mean()) if plot: import pylab as PL PL.ion() for p in range(self.P): PL.subplot(self.P, 1, p + 1) PL.plot(SP.arange(self.X.shape[1])[Ic], Bc[:, p], "o", color="y", alpha=0.05) PL.plot(SP.arange(self.X.shape[1])[Ic], Bi[:, p], "o", color="r", alpha=0.05) # PL.ylim(-2,2) PL.plot([0, Ic.shape[0]], [0, 0], "k") return Yc, Yi