示例#1
0
def demo_using_images():
    img = Image.open('images/0_fp_1_aligned.jpg')
    bounding_boxes, landmarks = detect_faces(img)
    img = cv.cvtColor(np.array(img), cv.COLOR_RGB2BGR)
    show_bboxes(img, bounding_boxes, landmarks)

    img = Image.open('images/0_fp_0_aligned.jpg')
    bounding_boxes, landmarks = detect_faces(img)
    img = cv.cvtColor(np.array(img), cv.COLOR_RGB2BGR)
    show_bboxes(img, bounding_boxes, landmarks)

    img = Image.open('images/0_fn_0_aligned.jpg')
    bounding_boxes, landmarks = detect_faces(img)
    img = cv.cvtColor(np.array(img), cv.COLOR_RGB2BGR)
    show_bboxes(img, bounding_boxes, landmarks)

    img = Image.open('images/5_fn_0_aligned.jpg')
    bounding_boxes, landmarks = detect_faces(img)
    img = cv.cvtColor(np.array(img), cv.COLOR_RGB2BGR)
    show_bboxes(img, bounding_boxes, landmarks)

    img = Image.open('images/6_fn_1_aligned.jpg')
    bounding_boxes, landmarks = detect_faces(img)
    img = cv.cvtColor(np.array(img), cv.COLOR_RGB2BGR)
    show_bboxes(img, bounding_boxes, landmarks)
示例#2
0
def image_loader(image_path, out_size, device, transform=None):
    global dst_img

    raw = cv.imread(image_path)
    img = Image.open(image_path).convert('RGB')
    _, facial5points = detect_faces(img)

    if len(facial5points) != 1:
        raise Exception("No face or multi faces...")

    facial5points = np.reshape(facial5points[0], (2, 5))

    # Default set
    crop_size = 224
    inner_padding_factor = 0.1
    outer_padding = 0
    output_size = 224

    # get the reference 5 landmarks position in the crop settings
    reference_5pts = get_reference_facial_points(
        (output_size, output_size), inner_padding_factor,
        (outer_padding, outer_padding), True)

    dst_img = warp_and_crop_face(raw,
                                 facial5points,
                                 reference_pts=reference_5pts,
                                 crop_size=(crop_size, crop_size))
    dst_img = cv.resize(dst_img, (out_size, out_size))[:, :, ::-1]
    dst_img_ = Image.fromarray(dst_img)
    im = transform(dst_img_).float()

    return im.unsqueeze(0).to(device)
示例#3
0
def camera(plfd_backbone, video_path, is_video):

    transform = transforms.Compose([transforms.ToTensor()])
    if is_video:
        cap = cv2.VideoCapture(video_path)
    else:
        cap = cv2.VideoCapture(0)
    while True:
        ret, img = cap.read()
        if not ret: break

        height, width = img.shape[:2]

        bounding_boxes, landmarks = detect_faces(img)
        for box in bounding_boxes:
            score = box[4]
            x1, y1, x2, y2 = (box[:4] + 0.5).astype(np.int32)
            w = x2 - x1 + 1
            h = y2 - y1 + 1

            size = int(max([w, h]) * 1.1)
            cx = x1 + w // 2
            cy = y1 + h // 2
            x1 = cx - size // 2
            x2 = x1 + size
            y1 = cy - size // 2
            y2 = y1 + size

            dx = max(0, -x1)
            dy = max(0, -y1)
            x1 = max(0, x1)
            y1 = max(0, y1)

            edx = max(0, x2 - width)
            edy = max(0, y2 - height)
            x2 = min(width, x2)
            y2 = min(height, y2)

            cropped = img[y1:y2, x1:x2]
            if (dx > 0 or dy > 0 or edx > 0 or edy > 0):
                cropped = cv2.copyMakeBorder(cropped, dy, edy, dx, edx,
                                             cv2.BORDER_CONSTANT, 0)

            cropped = cv2.resize(cropped, (112, 112))

            input = cv2.resize(cropped, (112, 112))
            input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
            input = transform(input).unsqueeze(0).cuda(0)
            with torch.no_grad():
                landmarks, _ = plfd_backbone(input)
            pre_landmark = landmarks[0]
            pre_landmark = pre_landmark.cpu().detach().numpy().reshape(
                -1, 2) * [size, size]
            for (x, y) in pre_landmark.astype(np.int32):
                cv2.circle(img, (x1 + x, y1 + y), 0, (0, 0, 255), 2)
            cv2.rectangle(img, tuple(box[:2].astype(np.int)),
                          tuple(box[2:4].astype(np.int)), (0, 0, 255), 1)
        cv2.imshow('0', img)
        if cv2.waitKey(10) == 27:
            break
示例#4
0
def auto_anno(dir_path):
    for f in os.listdir(dir_path):
        p = os.path.join(dir_path, f)
        print p
        if ".xml" in p:
            continue
        image = ip.image_to_3channels(p, True)
        if image is None:
            continue
        start = time.clock()
        bounding_boxes, landmarks = det.detect_faces(image)
        end = time.clock()
        print "take %sms" % (1000 * end -
                             1000 * start), "num faces:", len(bounding_boxes)
        if len(bounding_boxes) > 0:
            bounding_boxes = [[bbox[0], bbox[1], bbox[2], bbox[3]]
                              for bbox in bounding_boxes]
            bounding_boxes = np.round(bounding_boxes)
            bounding_boxes = np.asarray(bounding_boxes, np.int)

            ap.save_anno_to_xml(p,
                                image.size[0],
                                image.size[1],
                                3,
                                annos=bounding_boxes)
示例#5
0
    def detection(self, imgpath):
        img = cv2.imread(imgpath)
        bounding_boxes, _ = detect_faces(img)
        ul = np.array(bounding_boxes[0, 0:2])
        br = np.array(bounding_boxes[0, 2:4])
        w = br[0] - ul[0]
        h = br[1] - ul[1]
        uls = (ul - np.array([w * 0.1, h * 0.1])).astype(np.int)
        brs = (br + np.array([w * 0.1, h * 0.1])).astype(np.int)

        w, h = brs - uls
        if h > w:
            diff = h - w
            uls[0] = uls[0] - math.floor(diff / 2)
            brs[0] = brs[0] + math.ceil(diff / 2)
        else:
            diff = w - h
            uls[1] = uls[1] - math.floor(diff / 2)
            brs[1] = brs[1] + math.floor(diff / 2)
        self.uls = uls
        self.brs = brs
        self.box = [*uls, *brs]
        self.factor = (self.brs[0] - self.uls[0]) / 112

        img112 = cv2.resize(deepcopy(img[uls[1]:brs[1], uls[0]:brs[0], :]), (112, 112), interpolation=cv2.INTER_CUBIC)

        return img112
示例#6
0
def main(args):
    checkpoint = torch.load(args.model_path, map_location=device)
    plfd_backbone = PFLDInference().to(device)
    plfd_backbone.load_state_dict(checkpoint['plfd_backbone'])
    plfd_backbone.eval()
    plfd_backbone = plfd_backbone.to(device)
    transform = transforms.Compose([transforms.ToTensor()])

    cap = cv2.VideoCapture(0)
    while True:
        ret, img = cap.read()
        if not ret: break

        height, width = img.shape[:2]

        bounding_boxes, landmarks = detect_faces(img)
        for box in bounding_boxes:
            score = box[4]
            x1, y1, x2, y2 = (box[:4] + 0.5).astype(np.int32)
            w = x2 - x1 + 1
            h = y2 - y1 + 1

            size = int(max([w, h]) * 1.1)
            cx = x1 + w // 2
            cy = y1 + h // 2
            x1 = cx - size // 2
            x2 = x1 + size
            y1 = cy - size // 2
            y2 = y1 + size

            dx = max(0, -x1)
            dy = max(0, -y1)
            x1 = max(0, x1)
            y1 = max(0, y1)

            edx = max(0, x2 - width)
            edy = max(0, y2 - height)
            x2 = min(width, x2)
            y2 = min(height, y2)

            cropped = img[y1:y2, x1:x2]
            if dx > 0 or dy > 0 or edx > 0 or edy > 0:
                cropped = cv2.copyMakeBorder(cropped, dy, edy, dx, edx,
                                             cv2.BORDER_CONSTANT, 0)

            cropped = cv2.resize(cropped, (112, 112))

            input = cv2.resize(cropped, (112, 112))
            input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
            input = transform(input).unsqueeze(0).to(device)
            _, landmarks = plfd_backbone(input)
            pre_landmark = landmarks[0]
            pre_landmark = pre_landmark.cpu().detach().numpy().reshape(
                -1, 2) * [size, size]
            for (x, y) in pre_landmark.astype(np.int32):
                cv2.circle(img, (x1 + x, y1 + y), 1, (0, 0, 255))

        cv2.imshow('0', img)
        if cv2.waitKey(10) == 27:
            break
示例#7
0
    def get_faces_mtcnn(self, img_bgr):
        """
        基于MTCNN检测人脸
        """
        from mtcnn.detector import detect_faces
        bbox_mtcnn, landmarks_mtcnn = detect_faces(img_bgr, self.mtcnn_pro, min_face_size=50)

        bbox_list, lms_list, size_list = [], [], []

        for bbox, lms in zip(bbox_mtcnn, landmarks_mtcnn):
            box_prob = bbox[4]  # 置信度
            if box_prob < 0.9:  # 小于0.9直接pass
                continue

            box = bbox[0:4].astype(np.int32)
            bbox_list.append(box)

            lms_tmp = lms.astype(np.int32)
            lms_points = []
            for x, y in zip(lms_tmp[0:5], lms_tmp[5:10]):
                lms_points.append([x, y])
            lms_list.append(lms_points)

            # draw_box(img_bgr, box, is_new=False)
            # draw_points(img_bgr, lms_points, is_new=False)

        # from root_dir import IMGS_DIR
        # img_path = os.path.join(IMGS_DIR, "mtcnn_res.jpg")
        # cv2.imwrite(img_path, img_bgr)

        return bbox_list, lms_list
示例#8
0
文件: demo.py 项目: samuelyu2002/PFLD
def main(args):
    checkpoint = torch.load(args.model_path, map_location=device)
    pfld_backbone = PFLDInference().to(device)
    pfld_backbone.load_state_dict(checkpoint['plfd_backbone'])
    pfld_backbone.eval()
    pfld_backbone = pfld_backbone.to(device)
    transform = transforms.Compose([transforms.ToTensor()])

    im = Image.open(args.image_path)
    img = np.array(im)
    height, width = img.shape[:2]
    draw = ImageDraw.Draw(im)
    bounding_boxes, landmarks = detect_faces(img)
    print(bounding_boxes)
    for box in bounding_boxes:
        score = box[4]
        x1, y1, x2, y2 = (box[:4] + 0.5).astype(np.int32)
        w = x2 - x1 + 1
        h = y2 - y1 + 1

        size = int(max([w, h]) * 1.1)
        cx = x1 + w // 2
        cy = y1 + h // 2
        x1 = cx - size // 2
        x2 = x1 + size
        y1 = cy - size // 2
        y2 = y1 + size

        dx = max(0, -x1)
        dy = max(0, -y1)
        x1 = max(0, x1)
        y1 = max(0, y1)

        edx = max(0, x2 - width)
        edy = max(0, y2 - height)
        x2 = min(width, x2)
        y2 = min(height, y2)

        cropped = img[y1:y2, x1:x2]
        if (dx > 0 or dy > 0 or edx > 0 or edy > 0):
            cropped = cv2.copyMakeBorder(cropped, dy, edy, dx, edx,
                                         cv2.BORDER_CONSTANT, 0)

        cropped = cv2.resize(cropped, (112, 112))

        input = cv2.resize(cropped, (112, 112))
        input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
        input = transform(input).unsqueeze(0).to(device)
        landmarks = pfld_backbone(input)
        pre_landmark = landmarks[0]
        pre_landmark = pre_landmark.cpu().detach().numpy().reshape(
            -1, 2) * [size, size]
        print(pre_landmark)
        for (x, y) in pre_landmark.astype(np.int32):
            #            cv2.circle(img, (x1 + x, y1 + y), 1, (0, 0, 255))
            draw.ellipse((x1 + x - 1, y1 + y - 1, x1 + x + 1, y1 + y + 1),
                         fill=(0, 0, 255))

    im.show()
示例#9
0
def get_central_face_attributes(full_path):
    img = Image.open(full_path).convert('RGB')
    bounding_boxes, landmarks = detect_faces(img)

    if len(landmarks) > 0:
        i = select_central_face(img.size, bounding_boxes)
        return True, [bounding_boxes[i]], [landmarks[i]]
    return False, None, None
示例#10
0
 def get_faces_v2(self, face_dict):
     """
     基于MTCNN检测人脸
     :param face_dict: 数据字典
     :return: 人脸检测框
     """
     img_op = face_dict['img']
     bounding_boxes, landmarks = detect_faces(img_op)
     return bounding_boxes
示例#11
0
def get_all_face_attributes(full_path):
    try:
        img = Image.open(full_path).convert('RGB')
        bounding_boxes, landmarks = detect_faces(img)
        if len(landmarks) > 0:
            return True, bounding_boxes, landmarks
    except KeyboardInterrupt:
        raise
    except:
        pass
    return False, None, None
示例#12
0
def extract_keypoints(img_path, model_path):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    checkpoint = torch.load(model_path, map_location=device)
    pfld_backbone = PFLDInference().to(device)
    pfld_backbone.load_state_dict(checkpoint['pfld_backbone'])
    pfld_backbone.eval()
    pfld_backbone = pfld_backbone.to(device)
    transform = torchvision.transforms.Compose(
        [torchvision.transforms.ToTensor()])
    img = cv2.imread(img_path, 1)
    height, width = img.shape[:2]
    bounding_boxes, landmarks = detect_faces(img)
    for box in bounding_boxes:
        x1, y1, x2, y2 = (box[:4] + 0.5).astype(np.int32)
        w = x2 - x1 + 1  # 宽度
        h = y2 - y1 + 1  # 高度
        cx = x1 + w // 2  # 中心宽度
        cy = y1 + h // 2  # 中心高度

        size = int(max([w, h]) * 1.1)
        x1 = cx - size // 2
        x2 = x1 + size
        y1 = cy - size // 2
        y2 = y1 + size

        x1 = max(0, x1)
        y1 = max(0, y1)
        x2 = min(width, x2)
        y2 = min(height, y2)

        edx1 = max(0, -x1)
        edy1 = max(0, -y1)
        edx2 = max(0, x2 - width)
        edy2 = max(0, y2 - height)

        cropped = img[y1:y2, x1:x2]
        if edx1 > 0 or edy1 > 0 or edx2 > 0 or edy2 > 0:
            cropped = cv2.copyMakeBorder(cropped, edy1, edy2, edx1, edx2,
                                         cv2.BORDER_CONSTANT, 0)
        input = cv2.resize(cropped, (112, 112))
        cv2.imwrite(img_path.replace(".png", "_1.png"), input)
        input = transform(input).unsqueeze(0).to(device)
        _, landmarks = pfld_backbone(input)
        pre_landmark = landmarks[0]
        key_points = pre_landmark.cpu().detach().numpy().reshape(
            -1, 2) * [size, size] - [edx1, edy1]
        keypoints = []
        for (x, y) in key_points:
            cv2.circle(img, (x1 + int(x), y1 + int(y)), 2, (0, 255, 0), -1)
            keypoints.append([x1 + int(x), y1 + int(y)])
    cv2.imshow('face_landmark_68', img)
    cv2.waitKey(1000)
    return keypoints
def get_face_all_attributes(full_path):
    try:
        img = Image.open(full_path).convert('RGB')
        bounding_boxes, landmarks = detect_faces(img)

        if len(landmarks) > 0:
            i = select_central_face(img.size, bounding_boxes)
            return True, [bounding_boxes[i]], [landmarks[i]]

    except KeyboardInterrupt:
        raise
    except:
        pass
    return False, None, None
示例#14
0
    def predict_landmarks(self, img_op):
        height, width = img_op.shape[:2]
        bounding_boxes, landmarks = detect_faces(img_op)  # 检测人脸

        res_list = []

        for box in bounding_boxes:
            score = box[4]
            x1, y1, x2, y2 = (box[:4] + 0.5).astype(np.int32)
            w = x2 - x1 + 1
            h = y2 - y1 + 1

            size = int(max([w, h]) * 1.1)
            cx = x1 + w // 2
            cy = y1 + h // 2
            x1 = cx - size // 2
            x2 = x1 + size
            y1 = cy - size // 2
            y2 = y1 + size

            dx = max(0, -x1)
            dy = max(0, -y1)
            x1 = max(0, x1)
            y1 = max(0, y1)

            edx = max(0, x2 - width)
            edy = max(0, y2 - height)
            x2 = min(width, x2)
            y2 = min(height, y2)

            cropped = img_op[y1:y2, x1:x2]
            if dx > 0 or dy > 0 or edx > 0 or edy > 0:
                cropped = cv2.copyMakeBorder(cropped, dy, edy, dx, edx,
                                             cv2.BORDER_CONSTANT, 0)

            cropped = cv2.resize(cropped, (112, 112))

            input = cv2.resize(cropped, (112, 112))
            input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
            input = self.transform(input).unsqueeze(0).to(self.device)
            _, landmarks = self.plfd_backbone(input)

            pre_landmark = landmarks[0]
            pre_landmark = pre_landmark.cpu().detach().numpy().reshape(
                -1, 2) * [size, size]

            res_list.append([pre_landmark, x1, y1])  # 添加

        return res_list
示例#15
0
def main(args):
    checkpoint = torch.load(args.model_path)
    plfd_backbone = PFLDInference().cuda()
    plfd_backbone.load_state_dict(checkpoint['plfd_backbone'])
    plfd_backbone.eval()
    plfd_backbone = plfd_backbone.cuda()
    transform = transforms.Compose([transforms.ToTensor()])

    cap = cv2.VideoCapture(0)
    while True:
        ret, img = cap.read()
        if not ret: break

        bounding_boxes, landmarks = detect_faces(img)

        maxval_index = 0
        if (len(bounding_boxes) > 0):
            maxval_index = np.argmax(bounding_boxes[:, 4])

        if (len(bounding_boxes) > maxval_index - 1
                and len(bounding_boxes) > 0):
            face = img[int(bounding_boxes[maxval_index][1]
                           ):int(bounding_boxes[maxval_index][3]),
                       int(bounding_boxes[maxval_index][0]
                           ):int(bounding_boxes[maxval_index][2])]
            if face.size == 0:
                continue
            face_resized = cv2.resize(face,
                                      dsize=(112, 112),
                                      interpolation=cv2.INTER_LINEAR)
            face_resized = cv2.cvtColor(face_resized, cv2.COLOR_BGR2RGB)
            face_resized = transform(face_resized).unsqueeze(0).cuda()
            _, landmarks = plfd_backbone(face_resized)
            pre_landmark = landmarks.cpu().detach().numpy()[0].reshape(
                -1, 2) * [
                    int(bounding_boxes[maxval_index][2]) -
                    int(bounding_boxes[maxval_index][0]),
                    int(bounding_boxes[maxval_index][3]) -
                    int(bounding_boxes[maxval_index][1])
                ]

            for (x, y) in pre_landmark.astype(np.int32):
                cv2.circle(face, (x, y), 1, (255, 0, 0), -1)

            cv2.imshow("xxxx", face)
            if cv2.waitKey(10) == 27:
                break
示例#16
0
    def setUp(self):
        img_fn = 'images/0_img.jpg'
        self.image = cv.imread(img_fn, True)
        img = Image.open(img_fn).convert('RGB')
        _, facial5points = detect_faces(img)
        facial5points = np.reshape(facial5points[0], (2, 5))
        self.facial5points = facial5points

        default_square = True
        inner_padding_factor = 0
        outer_padding = (0, 0)
        output_size = (112, 112)

        self.reference_5pts = get_reference_facial_points(
            output_size, inner_padding_factor, outer_padding, default_square)

        self.output_size = output_size
示例#17
0
def detect_test(path):
    for f in os.listdir(path):
        p = os.path.join(path, f)
        image = ip.image_to_3channels(p, True)
        if image is None:
            continue
        start = time.clock()
        bounding_boxes, landmarks = det.detect_faces(image)
        end = time.clock()
        print "take %sms" % (1000 * end -
                             1000 * start), "num faces:", len(bounding_boxes)
        if len(bounding_boxes) > 0:
            draw = ImageDraw.Draw(image)

            for bbox in bounding_boxes:
                bbox = (bbox[0], bbox[1], bbox[2], bbox[3])
                draw.rectangle(bbox, outline="red")

            plt.imshow(image)
            plt.show()
示例#18
0
def demo_using_webcam():
    cam = VideoCapture(0)  # set the port of the camera as before

    cam.set(cv2.CAP_PROP_FPS, 15)
    cam.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
    cam.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

    cv2.namedWindow("image", cv2.WND_PROP_FULLSCREEN)
    cv2.setWindowProperty("image", cv2.WND_PROP_FULLSCREEN,
                          cv2.WINDOW_FULLSCREEN)

    while True:
        ret_val, img = cam.read(
        )  # return a True boolean and and the image if all go right
        if ret_val:
            bounding_boxes, landmarks = detect_faces(Image.fromarray(img))
            show_bboxes(img, bounding_boxes, landmarks, wait=False)
        else:
            break

    cam.release()  # Closes video file or capturing device.
示例#19
0
def get_face_attributes(full_path):
    try:
        img = Image.open(full_path).convert('RGB')
        bounding_boxes, landmarks = detect_faces(img)
        width, height = img.size

        if len(bounding_boxes) == 1:
            x1, y1, x2, y2 = bounding_boxes[0][0], bounding_boxes[0][
                1], bounding_boxes[0][2], bounding_boxes[0][3]
            if x1 < 0 or x1 >= width or x2 < 0 or x2 >= width or y1 < 0 or y1 >= height or y2 < 0 or y2 >= height or x1 >= x2 or y1 >= y2:
                return False, None, None

            landmarks = [int(round(x)) for x in landmarks[0]]
            is_valid = (x2 - x1) > width / 10 and (y2 - y1) > height / 10

            return is_valid, (int(round(x1)), int(round(y1)), int(round(x2)),
                              int(round(y2))), landmarks

    except KeyboardInterrupt:
        raise
    except:
        pass
    return False, None, None
示例#20
0
def get_your_faceImg_feature(name, model, features_dict):
    faceImg_path = './video/your_face_img'
    num_img_useful = 0
    for idx, img_name in enumerate(os.listdir(faceImg_path)):
        # detect face in your img
        img = Image.open(faceImg_path + '/' + img_name).convert('RGB')
        try:
            bounding_boxes, landmarks = detect_faces(img,
                                                     pnet=pnet,
                                                     rnet=rnet,
                                                     onet=onet,
                                                     device=device)
        except:
            continue
        if len(bounding_boxes) == 0:
            continue
        # crop the face from the img (112, 112)
        face_img, box = crop_face(np.array(img), bounding_boxes, landmarks)
        feature = get_face_feature(model, face_img)
        features_dict[name + '_' + str(idx)] = feature
        num_img_useful += 1
    print('Successfully collected your face img for %ds ' % num_img_useful)
    return features_dict
示例#21
0
def face_detect():
    start = time.time()
    ensure_folder(STATIC_DIR)
    ensure_folder(UPLOAD_DIR)
    file = request.files['file']
    fn = secure_filename(file.filename)
    full_path = os.path.join(UPLOAD_DIR, fn)
    file.save(full_path)
    # resize(full_path)
    print('full_path: ' + full_path)

    img = Image.open(full_path).convert('RGB')
    bboxes, landmarks = detect_faces(img)
    num_faces = len(bboxes)

    if num_faces > 0:
        img = cv.imread(full_path)
        draw_bboxes(img, bboxes, landmarks)
        cv.imwrite(full_path, img)

    elapsed = time.time() - start

    return num_faces, float(elapsed), str(fn), bboxes, landmarks
示例#22
0
    def show_img(self):
        global temp_t
        success, self.img = self.camera.read()
        if success:
            self.Image_num += 1
            if self.Image_num % 10 == 9:
                frame_rate = 10 / (time.clock() - self.timelb)
                self.FmRateLCD.display(frame_rate)
                self.timelb = time.clock()
            if self.case == 0:
                showImg = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
                showImg = qimage2ndarray.array2qimage(showImg)
                self.Camera_2.setPixmap(QPixmap(showImg))  # 展示图片
                self.Camera_2.show()
            if self.case == 1:
                bounding_boxes, landmarks = detect_faces(self.img)
                self.img = show_bboxes(self.img, bounding_boxes, landmarks)
                showImg = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
                showImg = qimage2ndarray.array2qimage(showImg)
                self.Camera_2.setPixmap(QPixmap(showImg))  # 展示图片
                self.Camera_2.show()
            if self.case == 2:
                img_copy = self.img.copy()
                frag_gray = False
                self.time_ing = time.time()
                # point=[100,0,540,480]
                if self.frag_cap:
                    bounding_boxes, landmarks = detect_faces(self.img)
                    print('正在定位······')
                    if len(bounding_boxes) == 1:
                        self.point.clear()
                        for b in bounding_boxes:
                            b = [int(round(value)) for value in b]
                            for i in b:
                                self.point.append(i)
                        self.frag_cap = False
                    # print(point)
                    # cv2.rectangle(draw, (b[0], b[1]), (b[2], b[3]), (0, 255, 0), 2)
                    # 裁剪坐标为[y0:y1, x0:x1]

                if not self.frag_cap:
                    if self.point[0] < 540:
                        self.img = self.img[self.point[1] - 10:479,
                                            self.point[0] - 100:self.point[2] +
                                            100]
                    else:
                        self.img = self.img[self.point[1] - 10:479,
                                            self.point[0] - 100:639]
                else:
                    self.img = self.img[1:479, 1:640]
                if int(self.time_ing - self.time_first) % 60 == 0:
                    self.frag_cap = True

                else:
                    self.frag_cap = False
                bounding_boxes, landmarks = detect_faces(self.img)

                #通过MTCNN人脸框判断,当检测不到人脸时判断低头or瞌睡
                if len(bounding_boxes) == 0:
                    self.nod_fps += 1
                if self.nod_fps >= 3:
                    self.Head_state.setText('点头')
                    self.nod_count += 1
                if len(bounding_boxes) > 0:
                    self.nod_fps = 0

                #通过头部姿态欧拉角角度变化判断是否摇头
                if len(bounding_boxes) > 0:
                    Head_Y_X_Z = get_head_pose(landmarks)
                    print('pitch:{}, yaw:{}, roll:{}'.format(
                        Head_Y_X_Z[1], Head_Y_X_Z[2], Head_Y_X_Z[3]))
                    if (Head_Y_X_Z[2] < -0.75):
                        self.shake_fps_l += 1
                    if (Head_Y_X_Z[2] >= -0.75):
                        self.shake_fps_l = 0
                    if self.shake_fps_l >= 5:
                        self.shake_count += 1
                        self.Head_state.setText('摇头')
                    if Head_Y_X_Z[3] >= 0.30:
                        self.shake_fps_r += 1
                    if self.shake_fps_r >= 5:
                        self.shake_count += 1
                        self.Head_state.setText('摇头')
                    if Head_Y_X_Z[3] < 0.30:
                        self.shake_fps_r = 0
                    # print(Head_Y_X_Z[1])
                    # print(Head_Y_X_Z[2])
                    # print(Head_Y_X_Z[3])

                if time.time() - self.nod_start > 3:
                    self.Head_state.setText('')
                if time.time() - self.shake_start > 3:
                    self.Head_state.setText('')
                # 计算低头频率  每10s计算一次
                if time.time() - self.nod_start > 10:
                    times = time.time() - self.nod_start
                    self.nod_freq = self.nod_count / times
                    self.nod_start = time.time()
                    self.Nod_LCD.display(self.nod_freq)

                # 计算摇头频率
                if time.time() - self.shake_start > 10:
                    times = time.time() - self.shake_start
                    self.shake_freq = self.shake_count / times
                    self.shake_start = time.time()
                    self.shake_LCD.display(self.shake_freq)

                if len(bounding_boxes) > 0:
                    Emotions = get_emotion(
                        get_face_expression(self.img, bounding_boxes))
                    self.Emotion.setText(Emotions[1])
                    self.Emotion_pred.display(float(Emotions[0]))
                    # print(Emotions)
                    canvas = cv2.imread('img_resource/label_pred.jpg',
                                        flags=cv2.IMREAD_UNCHANGED)
                    for (i,
                         (emotion,
                          prob)) in enumerate(zip(self.EMOTIONS, Emotions[2])):
                        # text = "{}: {:.2f}%".format(emotion, prob * 100)
                        text = "{:.2f}%".format(prob * 100)
                        # 绘制表情类和对应概率的条形图
                        w = int(prob * 180)
                        # print(text)
                        # canvas = 255 * np.ones((250, 300, 3), dtype="uint8")

                        cv2.rectangle(canvas, (0, (i * 44) + 25),
                                      (w, (i * 43) + 40), (100, 200, 130), -1)
                        cv2.putText(canvas, text, (170, (i * 43) + 40),
                                    cv2.FONT_HERSHEY_DUPLEX, 0.6, (0, 0, 0), 1)
                        show = cv2.cvtColor(canvas, cv2.COLOR_BGR2RGB)
                        showImage = QtGui.QImage(show.data, show.shape[1],
                                                 show.shape[0],
                                                 QtGui.QImage.Format_RGB888)
                        # cv2.imshow('test', showImage)
                        # showImg=QPixmap(showImage)
                        self.label_pred_img.setPixmap(
                            QtGui.QPixmap.fromImage(showImage))
                #         # print('test')
                # print('Head_Y_X_Z')
                # print(Head_Y_X_Z)

                x = cv2.resize(self.img, (300, 300)).astype(np.float32)
                flag_B = True  # 是否闭眼的flag
                flag_Y = False
                num_rec = 0  # 检测到的眼睛的数量

                # 分界线
                x -= self.img_mean
                x = x.astype(np.float32)
                x = x[:, :, ::-1].copy()
                x = torch.from_numpy(x).permute(2, 0, 1)
                xx = Variable(x.unsqueeze(0))
                # if torch.cuda.is_available():
                #     xx = xx.cuda()
                xx = xx.cuda()
                y = self.net(xx)
                softmax = nn.Softmax(dim=-1)
                detect = Detect(config.class_num, 0, 200, 0.01, 0.45)
                priors = utils.default_prior_box()

                loc, conf = y
                loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
                conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)

                detections = detect(
                    loc.view(loc.size(0), -1, 4),
                    softmax(conf.view(conf.size(0), -1, config.class_num)),
                    torch.cat([o.view(-1, 4) for o in priors], 0)).data
                labels = VOC_CLASSES
                # 将检测结果放置于图片上
                scale = torch.Tensor(self.img.shape[1::-1]).repeat(2)
                self.img = show_bboxes(self.img, bounding_boxes, landmarks)
                for i in range(detections.size(1)):

                    j = 0
                    while detections[0, i, j, 0] >= 0.4:
                        score = detections[0, i, j, 0]
                        label_name = labels[i - 1]
                        if label_name == 'calling' and score > 0.8:
                            self.Danger_state.setText('打电话')
                            self.danger_count += 1
                            frag_gray = True
                        if label_name == 'smoke' and score > 0.8:
                            self.Danger_state.setText('吸烟')
                            self.danger_count += 1
                            frag_gray = True
                        if label_name != 'smoke' and label_name != 'calling':
                            self.danger_t += 1
                        if self.danger_t >= 20:
                            self.Danger_state.setText('')
                            self.danger_t = 0
                        if label_name == 'open_eye':
                            self.open_t += 1
                            if self.open_t >= 20:
                                self.Eyes_state.setText('')
                                self.open_t = 0
                        if label_name == 'closed_mouth':
                            self.Mouth_state.setText(' ')
                        if label_name == 'closed_eye':
                            flag_B = False
                            frag_gray = True
                        if label_name == 'open_mouth':
                            flag_Y = True
                        display_txt = '%s:%.2f' % (label_name, score)
                        pt = (detections[0, i, j, 1:] * scale).cpu().numpy()
                        self.coords = (
                            pt[0], pt[1]), pt[2] - pt[0] + 1, pt[3] - pt[1] + 1
                        color = self.colors_tableau[i]
                        cv2.rectangle(self.img, (pt[0], pt[1]), (pt[2], pt[3]),
                                      color, 2)
                        cv2.putText(self.img, display_txt,
                                    (int(pt[0]), int(pt[1]) + 10),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.4,
                                    (255, 255, 255), 1, 8)
                        j += 1
                        num_rec += 1

                # cv2.imshow('test', self.img)
                if num_rec > 0:
                    if flag_B:
                        # print(' 1:eye-open')
                        self.list_B = np.append(self.list_B, 1)  # 睁眼为‘1’
                        self.list_blink = np.append(self.list_blink, 1)
                    else:
                        # print(' 0:eye-closed')

                        self.list_B = np.append(self.list_B, 0)  # 闭眼为‘0’
                        self.list_blink = np.append(self.list_blink, 0)
                    self.list_blink = np.delete(self.list_blink, 0)
                    self.list_B = np.delete(self.list_B, 0)
                    if flag_Y:
                        self.list_Y = np.append(self.list_Y, 1)
                    else:
                        self.list_Y = np.append(self.list_Y, 0)
                    self.list_Y = np.delete(self.list_Y, 0)
                else:
                    self.Msg.clear()
                    self.Msg.setPlainText('Nothing detected.')

                # print(list)
                # 实时计算PERCLOS
                self.perclos = 1 - np.average(self.list_blink)
                # print('perclos={:f}'.format(perclos))
                self.PERCLOS.display(self.perclos)
                if self.list_B[8] == 1 and self.list_B[9] == 0:
                    # 如果上一帧为’1‘,此帧为’0‘则判定为眨眼
                    self.Eyes_state.setText('眨眼')
                    self.blink_count += 1
                    frag_gray = True
                    str = datetime.datetime.now().strftime("%H:%M:%S")
                    self.State_record.append(str + ':眨眼')
                    # img_copy=cv2.cvtColor(img_copy,cv2.COLOR_RGB2GRAY)
                blink_T = time.time() - self.blink_start
                if blink_T > 30:
                    # 每30秒计算一次眨眼频率
                    blink_freq = self.blink_count / blink_T
                    self.blink_start = time.time()
                    self.blink_count = 0
                    print('blink_freq={:f}'.format(blink_freq))
                    self.Blink_freq.display(blink_freq * 2)
                # 检测打哈欠
                # if Yawn(list_Y,list_Y1):
                if (self.list_Y[len(self.list_Y) -
                                len(self.list_Y1):] == self.list_Y1).all():
                    # print('----------------------打哈欠----------------------')
                    self.Mouth_state.setText('打哈欠')
                    self.yawn_count += 1
                    frag_gray = True
                    str = datetime.datetime.now().strftime("%H:%M:%S")
                    self.State_record.append(str + ':打哈欠')
                    self.list_Y = np.zeros(50)
                # 计算打哈欠频率
                yawn_T = time.time() - self.yawn_start
                if yawn_T > 60:
                    yawn_freq = self.yawn_count / yawn_T
                    self.yawn_start = time.time()
                    self.yawn_count = 0
                    print('yawn_freq={:f}'.format(yawn_freq))
                    self.Yawn_freq.display(yawn_freq)

                # 计算危险行为频率
                DangerAct_T = time.time() - self.danger_start
                if DangerAct_T > 60:
                    danger_freq = self.danger_count / DangerAct_T
                    self.danger_start = time.time()
                    self.danger_count = 0
                    print('danger_freq={:f}'.format(danger_freq))
                    self.Danger_LCD.display(danger_freq)

                if (self.perclos > 0.4):
                    # print('疲劳')
                    self.State.setText('疲劳')
                elif (self.blink_freq > 0.3):
                    # print('疲劳')
                    self.State.setText('疲劳')
                    self.blink_freq = 0  # 如果因为眨眼频率判断疲劳,则初始化眨眼频率
                elif (self.yawn_freq > 5.0 / 60):
                    # print("疲劳")
                    self.State.setText('疲劳')
                    self.yawn_freq = 0  # 初始化,同上
                else:
                    self.State.setText('清醒')

                if not frag_gray:
                    showImg = cv2.cvtColor(img_copy, cv2.COLOR_BGR2RGB)
                else:
                    if self.isRecordImg:
                        str = datetime.datetime.now().strftime(
                            "%Y_%m_%d_%H_%M_%S")
                        temp = 'ImgRecord/' + str + '.jpg'
                        cv2.imwrite(temp, img_copy)

                    showImg = cv2.cvtColor(img_copy, cv2.COLOR_RGB2GRAY)
                showImg = qimage2ndarray.array2qimage(showImg)
                self.Camera_2.setPixmap(QPixmap(showImg))  # 展示图片
                self.Camera_2.show()
            if self.case == 3:
                img_copy = self.img.copy()
                frag_gray = False
                self.time_ing = time.time()
                # point=[100,0,540,480]
                if self.frag_cap:
                    bounding_boxes, landmarks = detect_faces(self.img)
                    print('正在定位······')
                    if len(bounding_boxes) == 1:
                        self.point.clear()
                        for b in bounding_boxes:
                            b = [int(round(value)) for value in b]
                            for i in b:
                                self.point.append(i)
                        self.frag_cap = False
                    # print(point)
                    # cv2.rectangle(draw, (b[0], b[1]), (b[2], b[3]), (0, 255, 0), 2)
                    # 裁剪坐标为[y0:y1, x0:x1]

                if not self.frag_cap:
                    if self.point[0] < 540:
                        self.img = self.img[self.point[1] - 10:479,
                                            self.point[0] - 100:self.point[2] +
                                            100]
                    else:
                        self.img = self.img[self.point[1] - 10:479,
                                            self.point[0] - 100:639]
                else:
                    self.img = self.img[1:479, 1:640]
                if int(self.time_ing - self.time_first) % 60 == 0:
                    self.frag_cap = True

                else:
                    self.frag_cap = False
                bounding_boxes, landmarks = detect_faces(self.img)

                # 通过MTCNN人脸框判断,当检测不到人脸时判断低头or瞌睡
                if len(bounding_boxes) == 0:
                    self.nod_fps += 1
                if self.nod_fps >= 3:
                    self.Head_state.setText('点头')
                    self.nod_count += 1
                if len(bounding_boxes) > 0:
                    self.nod_fps = 0

                # 通过头部姿态欧拉角角度变化判断是否摇头
                if len(bounding_boxes) > 0:
                    Head_Y_X_Z = get_head_pose(landmarks)
                    print('pitch:{}, yaw:{}, roll:{}'.format(
                        Head_Y_X_Z[1], Head_Y_X_Z[2], Head_Y_X_Z[3]))
                    if (Head_Y_X_Z[2] < -0.75):
                        self.shake_fps_l += 1
                    if (Head_Y_X_Z[2] >= -0.75):
                        self.shake_fps_l = 0
                    if self.shake_fps_l >= 5:
                        self.shake_count += 1
                        self.Head_state.setText('摇头')
                    if Head_Y_X_Z[3] >= 0.30:
                        self.shake_fps_r += 1
                    if self.shake_fps_r >= 5:
                        self.shake_count += 1
                        self.Head_state.setText('摇头')
                    if Head_Y_X_Z[3] < 0.30:
                        self.shake_fps_r = 0
                    # print(Head_Y_X_Z[1])
                    # print(Head_Y_X_Z[2])
                    # print(Head_Y_X_Z[3])

                if time.time() - self.nod_start > 3:
                    self.Head_state.setText('')
                if time.time() - self.shake_start > 3:
                    self.Head_state.setText('')
                # 计算低头频率  每10s计算一次
                if time.time() - self.nod_start > 10:
                    times = time.time() - self.nod_start
                    self.nod_freq = self.nod_count / times
                    self.nod_start = time.time()
                    self.Nod_LCD.display(self.nod_freq)

                # 计算摇头频率
                if time.time() - self.shake_start > 10:
                    times = time.time() - self.shake_start
                    self.shake_freq = self.shake_count / times
                    self.shake_start = time.time()
                    self.shake_LCD.display(self.shake_freq)

                if len(bounding_boxes) > 0:
                    Emotions = get_emotion(
                        get_face_expression(self.img, bounding_boxes))
                    self.Emotion.setText(Emotions[1])
                    self.Emotion_pred.display(float(Emotions[0]))
                    # print(Emotions)
                    canvas = cv2.imread('img_resource/label_pred.jpg',
                                        flags=cv2.IMREAD_UNCHANGED)
                    for (i,
                         (emotion,
                          prob)) in enumerate(zip(self.EMOTIONS, Emotions[2])):
                        # text = "{}: {:.2f}%".format(emotion, prob * 100)
                        text = "{:.2f}%".format(prob * 100)
                        # 绘制表情类和对应概率的条形图
                        w = int(prob * 180)
                        # print(text)
                        # canvas = 255 * np.ones((250, 300, 3), dtype="uint8")

                        cv2.rectangle(canvas, (0, (i * 44) + 25),
                                      (w, (i * 43) + 40), (100, 200, 130), -1)
                        cv2.putText(canvas, text, (170, (i * 43) + 40),
                                    cv2.FONT_HERSHEY_DUPLEX, 0.6, (0, 0, 0), 1)
                        show = cv2.cvtColor(canvas, cv2.COLOR_BGR2RGB)
                        showImage = QtGui.QImage(show.data, show.shape[1],
                                                 show.shape[0],
                                                 QtGui.QImage.Format_RGB888)
                        # cv2.imshow('test', showImage)
                        # showImg=QPixmap(showImage)
                        self.label_pred_img.setPixmap(
                            QtGui.QPixmap.fromImage(showImage))
                #         # print('test')
                # print('Head_Y_X_Z')
                # print(Head_Y_X_Z)

                x = cv2.resize(self.img, (300, 300)).astype(np.float32)
                flag_B = True  # 是否闭眼的flag
                flag_Y = False
                num_rec = 0  # 检测到的眼睛的数量

                # 分界线
                x -= self.img_mean
                x = x.astype(np.float32)
                x = x[:, :, ::-1].copy()
                x = torch.from_numpy(x).permute(2, 0, 1)
                xx = Variable(x.unsqueeze(0))
                # if torch.cuda.is_available():
                #     xx = xx.cuda()
                xx = xx.cuda()
                y = self.net(xx)
                softmax = nn.Softmax(dim=-1)
                detect = Detect(config.class_num, 0, 200, 0.01, 0.45)
                priors = utils.default_prior_box()

                loc, conf = y
                loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
                conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)

                detections = detect(
                    loc.view(loc.size(0), -1, 4),
                    softmax(conf.view(conf.size(0), -1, config.class_num)),
                    torch.cat([o.view(-1, 4) for o in priors], 0)).data
                labels = VOC_CLASSES
                # 将检测结果放置于图片上
                scale = torch.Tensor(self.img.shape[1::-1]).repeat(2)
                self.img = show_bboxes(self.img, bounding_boxes, landmarks)
                for i in range(detections.size(1)):

                    j = 0
                    while detections[0, i, j, 0] >= 0.4:
                        score = detections[0, i, j, 0]
                        label_name = labels[i - 1]
                        if label_name == 'calling' and score > 0.8:
                            self.Danger_state.setText('打电话')
                            self.danger_count += 1
                            frag_gray = True
                        if label_name == 'smoke' and score > 0.8:
                            self.Danger_state.setText('吸烟')
                            self.danger_count += 1
                            frag_gray = True
                        if label_name != 'smoke' and label_name != 'calling':
                            self.danger_t += 1
                        if self.danger_t >= 20:
                            self.Danger_state.setText('')
                            self.danger_t = 0
                        if label_name == 'open_eye':
                            self.open_t += 1
                            if self.open_t >= 20:
                                self.Eyes_state.setText('')
                                self.open_t = 0
                        if label_name == 'closed_mouth':
                            self.Mouth_state.setText(' ')
                        if label_name == 'closed_eye':
                            flag_B = False
                            frag_gray = True
                        if label_name == 'open_mouth':
                            flag_Y = True
                        display_txt = '%s:%.2f' % (label_name, score)
                        pt = (detections[0, i, j, 1:] * scale).cpu().numpy()
                        self.coords = (
                            pt[0], pt[1]), pt[2] - pt[0] + 1, pt[3] - pt[1] + 1
                        color = self.colors_tableau[i]
                        cv2.rectangle(self.img, (pt[0], pt[1]), (pt[2], pt[3]),
                                      color, 2)
                        cv2.putText(self.img, display_txt,
                                    (int(pt[0]), int(pt[1]) + 10),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.4,
                                    (255, 255, 255), 1, 8)
                        j += 1
                        num_rec += 1

                # cv2.imshow('test', self.img)
                if num_rec > 0:
                    if flag_B:
                        # print(' 1:eye-open')
                        self.list_B = np.append(self.list_B, 1)  # 睁眼为‘1’
                        self.list_blink = np.append(self.list_blink, 1)
                    else:
                        # print(' 0:eye-closed')

                        self.list_B = np.append(self.list_B, 0)  # 闭眼为‘0’
                        self.list_blink = np.append(self.list_blink, 0)
                    self.list_blink = np.delete(self.list_blink, 0)
                    self.list_B = np.delete(self.list_B, 0)
                    if flag_Y:
                        self.list_Y = np.append(self.list_Y, 1)
                    else:
                        self.list_Y = np.append(self.list_Y, 0)
                    self.list_Y = np.delete(self.list_Y, 0)
                else:
                    self.Msg.clear()
                    self.Msg.setPlainText('Nothing detected.')

                # print(list)
                # 实时计算PERCLOS
                self.perclos = 1 - np.average(self.list_blink)
                # print('perclos={:f}'.format(perclos))
                self.PERCLOS.display(self.perclos)
                if self.list_B[8] == 1 and self.list_B[9] == 0:
                    # 如果上一帧为’1‘,此帧为’0‘则判定为眨眼
                    self.Eyes_state.setText('眨眼')
                    self.blink_count += 1
                    frag_gray = True
                    str = datetime.datetime.now().strftime("%H:%M:%S")
                    self.State_record.append(str + ':眨眼')
                    # img_copy=cv2.cvtColor(img_copy,cv2.COLOR_RGB2GRAY)
                blink_T = time.time() - self.blink_start
                if blink_T > 30:
                    # 每30秒计算一次眨眼频率
                    blink_freq = self.blink_count / blink_T
                    self.blink_start = time.time()
                    self.blink_count = 0
                    print('blink_freq={:f}'.format(blink_freq))
                    self.Blink_freq.display(blink_freq * 2)
                # 检测打哈欠
                # if Yawn(list_Y,list_Y1):
                if (self.list_Y[len(self.list_Y) -
                                len(self.list_Y1):] == self.list_Y1).all():
                    # print('----------------------打哈欠----------------------')
                    self.Mouth_state.setText('打哈欠')
                    self.yawn_count += 1
                    frag_gray = True
                    str = datetime.datetime.now().strftime("%H:%M:%S")
                    self.State_record.append(str + ':打哈欠')
                    self.list_Y = np.zeros(50)
                # 计算打哈欠频率
                yawn_T = time.time() - self.yawn_start
                if yawn_T > 60:
                    yawn_freq = self.yawn_count / yawn_T
                    self.yawn_start = time.time()
                    self.yawn_count = 0
                    print('yawn_freq={:f}'.format(yawn_freq))
                    self.Yawn_freq.display(yawn_freq)

                # 计算危险行为频率
                DangerAct_T = time.time() - self.danger_start
                if DangerAct_T > 60:
                    danger_freq = self.danger_count / DangerAct_T
                    self.danger_start = time.time()
                    self.danger_count = 0
                    print('danger_freq={:f}'.format(danger_freq))
                    self.Danger_LCD.display(danger_freq)

                if (self.perclos > 0.4):
                    # print('疲劳')
                    self.State.setText('疲劳')
                elif (self.blink_freq > 0.3):
                    # print('疲劳')
                    self.State.setText('疲劳')
                    self.blink_freq = 0  # 如果因为眨眼频率判断疲劳,则初始化眨眼频率
                elif (self.yawn_freq > 5.0 / 60):
                    # print("疲劳")
                    self.State.setText('疲劳')
                    self.yawn_freq = 0  # 初始化,同上
                else:
                    self.State.setText('清醒')

                if not frag_gray:
                    showImg = cv2.cvtColor(img_copy, cv2.COLOR_BGR2RGB)
                else:
                    if self.isRecordImg:
                        str = datetime.datetime.now().strftime(
                            "%Y_%m_%d_%H_%M_%S")
                        temp = 'ImgRecord/' + str + '.jpg'
                        cv2.imwrite(temp, img_copy)

                    showImg = cv2.cvtColor(img_copy, cv2.COLOR_RGB2GRAY)
                self.State_record.moveCursor(QTextCursor.End)
                showImg = qimage2ndarray.array2qimage(showImg)
                self.Camera_2.setPixmap(QPixmap(showImg))  # 展示图片
                self.Camera_2.show()
示例#23
0
        cv.putText(img_raw, text, (cx, cy),
                   cv.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255))

        # landms
        landms = landmarks[i]
        cv.circle(img_raw, (landms[0], landms[5]), 1, (0, 0, 255), 4)
        cv.circle(img_raw, (landms[1], landms[6]), 1, (0, 255, 255), 4)
        cv.circle(img_raw, (landms[2], landms[7]), 1, (255, 0, 255), 4)
        cv.circle(img_raw, (landms[3], landms[8]), 1, (0, 255, 0), 4)
        cv.circle(img_raw, (landms[4], landms[9]), 1, (255, 0, 0), 4)

    # save image

    cv.imwrite('images/result.jpg', img_raw)
    cv.imshow('image', img_raw)
    cv.waitKey(0)


if __name__ == "__main__":
    full_path = 'test/Jason Behr_27968.JPG'
    img = Image.open(full_path).convert('RGB')
    bboxes, landmarks = mtcnn.detect_faces(img)
    print(bboxes)
    print(landmarks)
    show_bboxes(full_path, bboxes, landmarks)

    bboxes, landmarks = retinaface.detect_faces(img)
    print(bboxes)
    print(landmarks)
    show_bboxes(full_path, bboxes, landmarks)
示例#24
0
def get_all_face_attributes(full_path):
    img = Image.open(full_path).convert('RGB')
    bounding_boxes, landmarks = detect_faces(img)
    return bounding_boxes, landmarks
示例#25
0
def face_attributes():
    start = time.time()
    ensure_folder(STATIC_DIR)
    ensure_folder(UPLOAD_DIR)
    file = request.files['file']
    fn = secure_filename(file.filename)
    full_path = os.path.join(UPLOAD_DIR, fn)
    file.save(full_path)
    # resize(full_path)
    print('full_path: ' + full_path)

    img = Image.open(full_path).convert('RGB')
    bboxes, landmarks = detect_faces(img)

    result = None

    if len(bboxes) > 0:
        i = select_central_face((im_size, im_size), bboxes)
        bbox = bboxes[i]
        img = cv.imread(full_path)
        boxed = draw_bboxes(img, [bbox], [landmarks[i]])
        cv.imwrite(full_path, boxed)
        img = crop_image(img, bbox)
        img = cv.resize(img, (im_size, im_size))
        img = transforms.ToPILImage()(img)
        img = transformer(img)
        img = img.to(device)

        inputs = torch.zeros([1, 3, im_size, im_size], dtype=torch.float)
        inputs[0] = img

        with torch.no_grad():
            reg_out, expression_out, gender_out, glasses_out, race_out = model(
                inputs)

        reg_out = reg_out.cpu().numpy()
        age_out = reg_out[0, 0]
        pitch_out = reg_out[0, 1]
        roll_out = reg_out[0, 2]
        yaw_out = reg_out[0, 3]
        beauty_out = reg_out[0, 4]

        age = int(age_out * 100)
        pitch = float('{0:.2f}'.format(pitch_out * 360 - 180))
        roll = float('{0:.2f}'.format(roll_out * 360 - 180))
        yaw = float('{0:.2f}'.format(yaw_out * 360 - 180))
        beauty = float('{0:.2f}'.format(beauty_out * 100))
        beauty_prob = float('{0:.4f}'.format(get_prob(beauty)))

        _, expression_out = expression_out.topk(1, 1, True, True)
        _, gender_out = gender_out.topk(1, 1, True, True)
        _, glasses_out = glasses_out.topk(1, 1, True, True)
        _, race_out = race_out.topk(1, 1, True, True)
        expression_out = expression_out.cpu().numpy()
        gender_out = gender_out.cpu().numpy()
        glasses_out = glasses_out.cpu().numpy()
        race_out = race_out.cpu().numpy()

        expression = idx2name(int(expression_out[0, 0]), 'expression')
        gender = idx2name(int(gender_out[0, 0]), 'gender')
        glasses = idx2name(int(glasses_out[0, 0]), 'glasses')
        race = idx2name(int(race_out[0, 0]), 'race')

        result = {
            'age': age,
            'pitch': pitch,
            'roll': roll,
            'yaw': yaw,
            'beauty': beauty,
            'beauty_prob': beauty_prob,
            'expression': expression,
            'gender': gender,
            'glasses': glasses,
            'race': race
        }

    elapsed = time.time() - start

    return result, float(elapsed), str(fn)
    # 		# 如果连续3次都小于阈值,则表示瞌睡点头一次
    # 		if hCOUNTER >= NOD_AR_CONSEC_FRAMES:  # 阈值:3
    # 			hTOTAL += 1
    # 			print('点头')
    # 			# 重置点头帧计数器
    # 			hCOUNTER = 0
    ##########################################

    # # 检测
    # time_2=time.time()
    # if int(time_2-time_)%20==0:
    # 	frag=True

    if frag:
        point = [100, 0, 540, 480]
        bounding_boxes, landmarks = detect_faces(img)
        img = show_bboxes(img, bounding_boxes, landmarks)
        if len(bounding_boxes) > 0:
            point.clear()
            for b in bounding_boxes:
                b = [int(round(value)) for value in b]
                for i in b:
                    point.append(i)
            frag = False
        print(point)
        # cv2.rectangle(draw, (b[0], b[1]), (b[2], b[3]), (0, 255, 0), 2)
        # 裁剪坐标为[y0:y1, x0:x1]
    if frag == False:
        img = img[point[1]:480, point[0] - 100:point[2] + 100]
    bounding_boxes, landmarks = detect_faces(img)
    if len(bounding_boxes) > 0:
示例#27
0
    # video_src = 0 # camera device id
    capture = cv2.VideoCapture(video_src)
    if not capture.isOpened():
        print('Camera is not opened!')
    else:
        idx_frame = 0
        while True:
            ret, frame = capture.read()
            idx_frame += 1
            if idx_frame % 2 != 0:
                continue
            idx_frame = 0
            cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            start = time.time()
            img = Image.fromarray(frame)
            try:
                bounding_boxes, landmarks = detect_faces(img,
                                                         pnet=pnet,
                                                         rnet=rnet,
                                                         onet=onet,
                                                         device=device)
            except:
                continue
            end = time.time()
            print(end - start)
            frame = show_bboxes(frame, bounding_boxes, landmarks)
            cv2.imshow('Video', frame)
            cv2.waitKey(1)

    capture.release()
示例#28
0
from PIL import Image
from mtcnn.detector import detect_faces

import time

camera_id = 0
cap = cv2.VideoCapture(camera_id)
if not cap.isOpened():
    sys.exit()

while True:
    ret, frame = cap.read()

    image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    pilImg = Image.fromarray(numpy.uint8(image))
    boxes, landmarks = detect_faces(pilImg)

    for box in boxes:
        box = [int(i) for i in box]
        image = cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]),
                              (255, 0, 0), 2)

    for marks in landmarks:
        for i, j in zip(marks[:5], marks[5:]):
            image = cv2.circle(image, (int(i), int(j)),
                               3,
                               color=(
                                   255,
                                   0,
                               ),
                               thickness=2)
示例#29
0
import cv2 as cv
import numpy as np
from PIL import Image

from align_faces import warp_and_crop_face, get_reference_facial_points
from mtcnn.detector import detect_faces

if __name__ == "__main__":
    for i in range(10):
        img_fn = 'images/{}_raw.jpg'.format(i)
        print('Loading image {}'.format(img_fn))
        raw = cv.imread(img_fn, True)
        img = Image.open(img_fn).convert('RGB')
        _, facial5points = detect_faces(img)
        facial5points = np.reshape(facial5points[0], (2, 5))
        crop_size = (224, 224)

        default_square = True
        inner_padding_factor = 0.25
        outer_padding = (0, 0)
        output_size = (224, 224)

        # get the reference 5 landmarks position in the crop settings
        reference_5pts = get_reference_facial_points(
            output_size, inner_padding_factor, outer_padding, default_square)

        # dst_img = warp_and_crop_face(raw, facial5points, reference_5pts, crop_size)
        dst_img = warp_and_crop_face(raw, facial5points, reference_pts=reference_5pts, crop_size=crop_size)
        cv.imwrite('images/{}_warped.jpg'.format(i), dst_img)
        img = cv.resize(raw, (224, 224))
        cv.imwrite('images/{}_img.jpg'.format(i), img)
示例#30
0
    gCategory = ['M', 'W']

    if not os.path.exists("results"):
        os.mkdir("results")

    # (2) Image processing and cropping
    for image_path in tqdm.tqdm(sorted(
            paths.list_images("./demo"))):  # Based on the path of the data
        _, name = os.path.split(image_path)

        raw = cv.imread(image_path)  # BGR
        raw = imutils.resize(raw, width=256)
        # img = Image.fromarray(raw[:, :, ::-1]) # RGB

        t0 = time.time()
        boxes, facial5points = detect_faces(raw)

        # whether show face keypoints or not
        # for p in facial5points:
        #     for i in range(5):
        #         cv.circle(raw, (int(p[i]), int(p[i + 5])), 4, (255, 0, 255), -1)
        # if len(facial5points) != 1:
        #     continue
        # facial5points = np.reshape(facial5points[0], (2, 5))
        # box = boxes[0].astype(int)
        if boxes is not None:
            for i in range(boxes.shape[0]):
                box = boxes[i].astype(np.int)
                if facial5points is not None:
                    facial5points = facial5points[i].astype(np.int)
                    for l in range(facial5points.shape[0]):