def train_net(args): imagedb = ImageDB(args.anno_file) train_imdb = imagedb.load_imdb() # train_imdb = imagedb.append_flipped_images(train_imdb) imagedb = ImageDB(args.eval_file) eval_imdb = imagedb.load_imdb() print('train : %d\teval : %d' % (len(train_imdb), len(eval_imdb))) train_pnet(args, train_imdb, eval_imdb)
def train_net(annotation_file, model_store_path, end_epoch=16, frequent=200, lr=0.01, batch_size=128, use_cuda=False): imagedb = ImageDB(annotation_file) gt_imdb = imagedb.load_imdb() gt_imdb = imagedb.append_flipped_images(gt_imdb) train_pnet(model_store_path=model_store_path, end_epoch=end_epoch, imdb=gt_imdb, batch_size=batch_size, frequent=frequent, base_lr=lr, use_cuda=use_cuda)
def train_net(annotation_file, model_store_path, end_epoch=16, frequent=200, lr=0.01, lr_epoch_decay=[9], batch_size=128, use_cuda=False, load=''): imagedb = ImageDB(annotation_file) gt_imdb = imagedb.load_imdb() print('DATASIZE', len(gt_imdb)) gt_imdb = imagedb.append_flipped_images(gt_imdb) print('FLIP DATASIZE', len(gt_imdb)) train_pnet(model_store_path=model_store_path, end_epoch=end_epoch, imdb=gt_imdb, batch_size=batch_size, frequent=frequent, base_lr=lr, lr_epoch_decay=lr_epoch_decay, use_cuda=use_cuda, load=load)