示例#1
0
文件: g2_graph.py 项目: nilsec/mtrack
 def add_forced(self, forced_vertices):
     """
     Add forced vertices - must be selected
     """
     for u in forced_vertices:
         self.__check_id(u)
         G.set_vertex_property(self, "forced", u, True)
示例#2
0
文件: g2_graph.py 项目: nilsec/mtrack
 def add_solved(self, solved_vertices):
     """
     Add solved vertices - constraints operating only on solved 
     vertices are dropped to avoid impossible situations
     """
     for u in solved_vertices:
         self.__check_id(int(u))
         G.set_vertex_property(self, "solved", u, True)
示例#3
0
    def set_partner(self, u, value, vals=None):
        assert (type(value) == int)
        assert (value < G.get_number_of_vertices(self))

        if vals is None:
            G.set_vertex_property(self, "partner", u, value)
        else:
            G.set_vertex_property(self, "partner", 0, 0, vals=vals)
示例#4
0
文件: g2_graph.py 项目: nilsec/mtrack
    def add_conflict(self, exclusive_vertices):
        """
        Add a tuple of exclusive vertices.
        """
        for u in exclusive_vertices:
            self.__check_id(u)

        conflicts = G.get_graph_property(self, "conflicts")
        conflicts.add(tuple(exclusive_vertices))
        G.set_graph_property(self, "conflicts", conflicts)

        return conflicts
示例#5
0
文件: g2_graph.py 项目: nilsec/mtrack
    def add_sum_constraint(self, vertices_left, vertices_right):
        """
        Require that the number of selected G2 nodes centered
        around a G1 node u is equal to the left and right
        of u. Ensures that we do not get branching.
        """
        assert (type(vertices_left) == list)
        assert (type(vertices_right) == list)

        for u in vertices_left + vertices_right:
            self.__check_id(u)

        sum_constraints = G.get_graph_property(self, "sum_constraints")
        sum_constraints.append(tuple([vertices_left, vertices_right]))
        G.set_graph_property(self, "sum_constraints", sum_constraints)
示例#6
0
 def get_edge_costs(self, orientation_factor, start_edge_prior):
     edge_cost_tot = {
         e: self.get_edge_cost(e) * orientation_factor
         for e in G.get_edge_iterator(self)
     }
     edge_cost_tot[self.START_EDGE] = 2.0 * start_edge_prior
     return edge_cost_tot
示例#7
0
    def get_vertex_cost(self):
        vertex_cost = {}
        for v in G.get_vertex_iterator(self):
            vertex_cost[v] = 0.0

        #Start Vertex
        vertex_cost[-1] = 0.0

        return vertex_cost
示例#8
0
 def get_edge_cost(self, e):
     return G.get_edge_property(self, "edge_cost", e=e)
示例#9
0
文件: g2_graph.py 项目: nilsec/mtrack
    def __init__(self, N):
        G.__init__(self, N)

        # Initialized with 0.0, see graph.G and tests
        G.new_vertex_property(self, "costs", dtype="double")

        G.new_graph_property(self, "conflicts", dtype="python::object")
        G.set_graph_property(self, "conflicts", set())

        G.new_graph_property(self, "sum_constraints", dtype="python::object")
        G.set_graph_property(self, "sum_constraints", list())

        G.new_vertex_property(self, "forced", dtype="bool", value=False)
        G.new_vertex_property(self, "solved", dtype="bool", value=False)

        G.new_graph_property(self, "must_pick_one", dtype="python::object")
        G.set_graph_property(self, "must_pick_one", list())
示例#10
0
文件: g2_graph.py 项目: nilsec/mtrack
 def get_must_pick_one(self):
     return G.get_graph_property(self, "must_pick_one")
示例#11
0
 def get_orientation(self, u):
     orientations = G.get_vertex_property(self, "orientation")
     return orientations[u]
示例#12
0
文件: g2_graph.py 项目: nilsec/mtrack
 def __check_id(self, u):
     assert (type(u) == int)
     assert (u < G.get_number_of_vertices(self))
     assert (u >= 0)
示例#13
0
文件: g2_graph.py 项目: nilsec/mtrack
 def add_must_pick_one(self, g2_vertex_list):
     must_pick_one = G.get_graph_property(self, "must_pick_one")
     must_pick_one.append(tuple(g2_vertex_list))
     G.set_graph_property(self, "must_pick_one", must_pick_one)
示例#14
0
文件: g2_graph.py 项目: nilsec/mtrack
 def set_cost(self, u, value):
     G.set_vertex_property(self, "costs", u, value)
示例#15
0
 def set_edge_cost(self, e, edge_cost):
     G.set_edge_property(self, "edge_cost", None, None, edge_cost, e)
示例#16
0
 def get_orientation_array(self):
     return G.get_vertex_property(self,
                                  "orientation").get_2d_array([0, 1, 2])
示例#17
0
文件: g2_graph.py 项目: nilsec/mtrack
 def get_forced(self, u):
     return G.get_vertex_property(self, "forced", u)
示例#18
0
    def set_position(self, u, value):
        assert (type(value) == np.ndarray)
        assert (len(value) == 3)
        assert (value.ndim == 1)

        G.set_vertex_property(self, "position", u, value)
示例#19
0
 def get_partner_array(self):
     partner = G.get_vertex_property(self, "partner")
     return partner.get_array()
示例#20
0
 def get_partner(self, u):
     partner = G.get_vertex_property(self, "partner")
     return partner[u]
示例#21
0
 def get_position(self, u):
     positions = G.get_vertex_property(self, "position")
     return positions[u]
示例#22
0
 def get_position_array(self):
     return G.get_vertex_property(self, "position").get_2d_array([0, 1, 2])
示例#23
0
文件: g2_graph.py 项目: nilsec/mtrack
 def get_conflicts(self):
     return G.get_graph_property(self, "conflicts")
示例#24
0
    def get_edge_combination_cost_angle(self,
                                        comb_angle_factor,
                                        comb_angle_prior=0.0,
                                        return_edges_to_middle=False):

        edge_index_map = G.get_edge_index_map(self)
        """
        Only collect the indices for each edge combination in
        the loop and perform cost calculation later in vectorized 
        form.
        """
        middle_indices = []
        edges_to_middle = {}
        end_indices = []
        edges = []
        cost = []
        prior_cost = {}
        """
        Problem: The indices are derived from the vertices in the graph.
        The graphs are filtered versions of a bigger graph where the
        vertices have not been enumerated newly. Thus we expect 
        vertices to have random indices, not corresponding to 
        the number of vertices in the sub graph. If we try to acces
        the position matrix with these indices we get out of bounds
        errors because the position matrix has only the entries 
        of the filtered subgraph. We need to map vertex indices
        in the range [0, N_vertices_subgraph - 1]
        """

        index_map = {}

        for n, v in enumerate(G.get_vertex_iterator(self)):
            incident_edges = G.get_incident_edges(self, v)
            index_map[v] = n

            for e1 in incident_edges:
                for e2 in incident_edges + [self.START_EDGE]:
                    e1_id = self.get_edge_id(e1, edge_index_map)
                    e2_id = self.get_edge_id(e2, edge_index_map)

                    if e1_id >= e2_id and e2_id != self.START_EDGE.id():
                        continue

                    if e2_id == self.START_EDGE.id():
                        """
                        Always append edges together with cost
                        s.t. zip(edges, cost) is a correct mapping
                        of edges to cost.
                        """
                        prior_cost[(e1, e2)] = comb_angle_prior
                        edges_to_middle[(e1, e2)] = int(v)

                    else:
                        """
                        Here we only save indices. How to secure
                        a proper matching between cost that we calculate
                        later and the corresponding edges?
                        1. Middle vertex is v -> index_map[v] in [0, N-1]
                        2. Append the middle_vertex twice to a list.
                        3. Append the distinct end vertices (2) to end vertices
                        4. Append the corresponding edges to a list.
                        -> We end up with 3 lists of the following form:
                        edges = [(e1, e2), (e3, e4), ...]
                        m_ind = [ m1, m1 ,  m2, m2 , ...]
                        e_ind = [ v1, v2 ,  v3, v4 , ...]
                        p_arr = [ p(m1)  ,   p(m2) , ...]
                        index_map: m1 -> 0, m2 -> 1, m3 -> 2, ...
                            --> p_arr[m1] = p(m1), p_arr[m2] = p(m2) 
                        """
                        middle_vertex = int(v)
                        middle_indices.extend([middle_vertex, middle_vertex])

                        end_vertices = set([
                            int(e1.source()),
                            int(e1.target()),
                            int(e2.source()),
                            int(e2.target())
                        ])

                        end_vertices.remove(middle_vertex)
                        end_indices.extend(list(end_vertices))
                        edges.append((e1, e2))
                        edges_to_middle[(e1, e2)] = int(v)
                        """
                        (e1, e2) -> end_indices, middle_indices
                        """

        if middle_indices:
            pos_array = self.get_position_array()
            end_indices = np.array([index_map[v] for v in end_indices])
            middle_indices = np.array([index_map[v] for v in middle_indices])

            v = (pos_array[:, end_indices] - pos_array[:, middle_indices]).T
            norm = np.sum(np.abs(v)**2, axis=-1)**(1. / 2.)
            u = v / np.clip(norm[:, None], a_min=10**(-8), a_max=None)
            angles = np.arccos(np.clip(inner1d(u[::2], u[1::2]), -1.0, 1.0))
            angles = np.pi - angles
            cost = cost + list((angles * comb_angle_factor)**2)

        edge_combination_cost = dict(itertools.izip(edges, cost))
        edge_combination_cost.update(prior_cost)

        if return_edges_to_middle:
            return edge_combination_cost, edges_to_middle
        else:
            return edge_combination_cost
示例#25
0
文件: g2_graph.py 项目: nilsec/mtrack
 def get_sum_constraints(self):
     return G.get_graph_property(self, "sum_constraints")
示例#26
0
    def get_edge_combination_cost_curvature(self,
                                            comb_angle_factor,
                                            comb_angle_prior=0.0,
                                            return_edges_to_middle=False):

        edge_index_map = G.get_edge_index_map(self)
        """
        Only collect the indices for each edge combination in
        the loop and perform cost calculation later in vectorized 
        form.
        """
        middle_indices = []
        edges_to_middle = {}
        end_indices = []
        edges = []
        cost = []
        prior_cost = {}
        edge_combination_cost = {}
        """
        Problem: The indices are derived from the vertices in the graph.
        The graphs are filtered versions of a bigger graph where the
        vertices have not been enumerated newly. Thus we expect 
        vertices to have random indices, not corresponding to 
        the number of vertices in the sub graph. If we try to acces
        the position matrix with these indices we get out of bounds
        errors because the position matrix has only the entries 
        of the filtered subgraph. We need to map vertex indices
        in the range [0, N_vertices_subgraph - 1]
        """

        index_map = {}

        for n, v in enumerate(G.get_vertex_iterator(self)):
            incident_edges = G.get_incident_edges(self, v)
            index_map[v] = n

            for e1 in incident_edges:
                for e2 in incident_edges + [self.START_EDGE]:
                    e1_id = self.get_edge_id(e1, edge_index_map)
                    e2_id = self.get_edge_id(e2, edge_index_map)

                    if e1_id >= e2_id and e2_id != self.START_EDGE.id():
                        continue

                    if e2_id == self.START_EDGE.id():
                        """
                        Always append edges together with cost
                        s.t. zip(edges, cost) is a correct mapping
                        of edges to cost.
                        """
                        prior_cost[(e1, e2)] = comb_angle_prior
                        edges_to_middle[(e1, e2)] = int(v)

                    else:
                        """
                        Here we only save indices. How to secure
                        a proper matching between cost that we calculate
                        later and the corresponding edges?

                        1. Middle vertex is v -> index_map[v] in [0, N-1]
                        2. Append the middle_vertex twice to a list.
                        3. Append the distinct end vertices (2) to end vertices
                        4. Append the corresponding edges to a list.

                        -> We end up with 3 lists of the following form:
                        edges = [(e1, e2), (e3, e4), ...]
                        m_ind = [ m1, m1 ,  m2, m2 , ...]
                        e_ind = [ v1, v2 ,  v3, v4 , ...]
                        p_arr = [ p(m1)  ,   p(m2) , ...]
                        index_map: m1 -> 0, m2 -> 1, m3 -> 2, ...
                            --> p_arr[m1] = p(m1), p_arr[m2] = p(m2) 
                        """
                        middle_vertex = int(v)
                        middle_indices.extend([middle_vertex, middle_vertex])

                        end_vertices = [
                            int(e1.source()),
                            int(e1.target()),
                            int(e2.source()),
                            int(e2.target())
                        ]

                        end_vertices.remove(middle_vertex)
                        end_vertices.remove(middle_vertex)

                        ordered_points = [None, None, None]
                        ordered_points[0] = np.array(
                            self.get_position(end_vertices[0]))
                        ordered_points[2] = np.array(
                            self.get_position(end_vertices[1]))
                        ordered_points[1] = np.array(
                            self.get_position(middle_vertex))

                        energy = get_energy_from_ordered_points(ordered_points,
                                                                n_samples=1000)
                        edge_combination_cost[(e1,
                                               e2)] = (energy *
                                                       comb_angle_factor)**2

                        end_indices.extend(list(end_vertices))
                        edges.append((e1, e2))
                        edges_to_middle[(e1, e2)] = int(v)
                        """
                        (e1, e2) -> end_indices, middle_indices
                        """

        edge_combination_cost.update(prior_cost)
        logger.info("edge_combination_cost: " + str(edge_combination_cost))

        if return_edges_to_middle:
            return edge_combination_cost, edges_to_middle
        else:
            return edge_combination_cost
示例#27
0
文件: g2_graph.py 项目: nilsec/mtrack
 def get_solved(self, u):
     return G.get_vertex_property(self, "solved", u)
示例#28
0
    def get_components(self,
                       min_vertices,
                       output_folder,
                       remove_aps=False,
                       min_k=1,
                       return_graphs=False):

        logger.info("Get components...")
        if remove_aps:
            logger.info("Remove articulation points...")
            naps_vp = G.get_articulation_points(self)
            G.set_vertex_filter(self, naps_vp)

        if min_k > 1:
            logger.info("Find " + str(min_k) + "-cores...")

            kcore_vp = G.get_kcore_mask(self, min_k)
            G.set_vertex_filter(self, kcore_vp)

        logger.info("Find connected components...")
        masks, hist = G.get_component_masks(self, min_vertices)

        if output_folder is not None:
            if not os.path.exists(output_folder):
                os.makedirs(output_folder)

        logger.info("Filter Graphs...")
        cc_path_list = []

        graph_list = []
        n = 0
        len_masks = len(masks)
        for mask in masks:
            logger.info("Filter graph " + str(n) + "/" + str(len_masks))
            if output_folder is not None:
                output_file = output_folder +\
                                "cc{}_min{}_phy.gt".format(n, min_vertices)
                cc_path_list.append(output_file)

            G.set_vertex_filter(self, mask)
            g1_masked = G1(0)
            g1_masked.g = self.g.copy()
            graph_list.append(g1_masked)

            if output_folder is not None:
                g1_masked.save(output_file)

            G.set_vertex_filter(self, None)
            n += 1
        if return_graphs:
            return graph_list
        else:
            return cc_path_list
示例#29
0
文件: g2_graph.py 项目: nilsec/mtrack
 def get_cost(self, u):
     return G.get_vertex_property(self, "costs", u)
示例#30
0
 def solve_edge(self, e):
     G.set_edge_property(self, "solved", None, None, True, e)