def interp_phi_quad(df, x, y, z, plot=False): df_trimmed = df.query('{0}<=X<={1} and {2}<=Y<={3} and {4}<=Z<={5}'.format( x-37.5, x+37.5, y-37.5, y+37.5, z-37.5, z+37.5)) df_trimmed = df_trimmed[['X', 'Y', 'Z', 'Bx', 'By', 'Bz']] df_trimmed = df_trimmed.sort_values(['X', 'Y', 'Z']).reset_index(drop=True) #df_true = df_trimmed.query('X=={0} and Y=={1} and Z=={2}'.format(x, y, z)) #if len(df_true) == 1: #pass # bx_interp = df_true.Bx # by_interp = df_true.By # bz_interp = df_true.Bz if False: pass else: df_trimmed['Vertex'] = [ # 0 1 2 3 4 5 6 7 8 '-1-1-1' , '-1-10' , '-1-11' , '-10-1' , '-100' , '-101' , '-11-1' , '-110' , '-111' , # 9 10 11 12 13 14 15 16 17 '0-1-1' , '0-10' , '0-11' , '00-1' , '000' , '001' , '01-1' , '010' , '011' , # 18 19 20 21 22 23 24 25 26 '1-1-1' , '1-10' , '1-11' , '10-1' , '100' , '101' , '11-1' , '110' , '111' , ] x_rel = (x - df_trimmed.ix[13].X) / (25.0) y_rel = (y - df_trimmed.ix[13].Y) / (25.0) z_rel = (z - df_trimmed.ix[13].Z) / (25.0) # print x_rel, y_rel, z_rel bxs = df_trimmed.Bx bys = df_trimmed.By bzs = df_trimmed.Bz tuning = 0.02 bx_interp = -( tuning*(x_rel*((x_rel+1)*bxs[13]-x_rel*bxs[4]) - x_rel*((1-x_rel)*bxs[13]+x_rel*bxs[22]))+ -(((bxs[4]+bxs[22])/2.0-bxs[13])*x_rel**2+((bxs[22]-bxs[4])/2.0)*x_rel+bxs[13]) ) #bx_interp = -( # x_rel*0.5*(bxs[4]+bxs[13]) - x_rel*0.5*(bxs[13]+bxs[22]) - # (1.0/6.0)*(bxs[4]+4*bxs[13]+bxs[22]) #) #bx_interp = ( # (( # #(min(0, x_rel)*(abs(x_rel)*bxs[9]-(1-abs(x_rel))*bxs[18])) - # (((bxs[0]+bxs[18])/2.0-bxs[9])*x_rel**2+((bxs[18]-bxs[0])/2.0)*x_rel+bxs[9])) * # 0.5*(y_rel**2-y_rel) + # ( # #(min(0, x_rel)*(abs(x_rel)*bxs[12]-(1-abs(x_rel))*bxs[21])) - # (((bxs[3]+bxs[21])/2.0-bxs[12])*x_rel**2+((bxs[21]-bxs[3])/2.0)*x_rel+bxs[12])) * # (-y_rel**2+1) + # ( # #(min(0, x_rel)*(abs(x_rel)*bxs[15]-(1-abs(x_rel))*bxs[24])) - # (((bxs[6]+bxs[24])/2.0-bxs[15])*x_rel**2+((bxs[24]-bxs[6])/2.0)*x_rel+bxs[15])) * # 0.5*(y_rel**2+y_rel))*0.5*(z_rel**2-z_rel) + #(( # #(min(0, x_rel)*(abs(x_rel)*bxs[10]-(1-abs(x_rel))*bxs[19])) - # (((bxs[1]+bxs[19])/2.0-bxs[10])*x_rel**2+((bxs[19]-bxs[1])/2.0)*x_rel+bxs[10])) * # 0.5*(y_rel**2-y_rel) + # ( #(min(0, x_rel)*(abs(x_rel)*bxs[13]-(1-abs(x_rel))*bxs[22])) - # (((bxs[4]+bxs[22])/2.0-bxs[13])*x_rel**2+((bxs[22]-bxs[4])/2.0)*x_rel+bxs[13])) * # (-y_rel**2+1) #+ # ( # #(min(0, x_rel)*(abs(x_rel)*bxs[16]-(1-abs(x_rel))*bxs[25])) - # (((bxs[7]+bxs[25])/2.0-bxs[16])*x_rel**2+((bxs[25]-bxs[7])/2.0)*x_rel+bxs[16])) * # 0.5*(y_rel**2+y_rel))*(-z_rel**2+1) + #(( # #(min(0, x_rel)*(abs(x_rel)*bxs[11]-(1-abs(x_rel))*bxs[20])) - # (((bxs[2]+bxs[20])/2.0-bxs[11])*x_rel**2+((bxs[20]-bxs[2])/2.0)*x_rel+bxs[11])) * # 0.5*(y_rel**2-y_rel) + # ( # #(min(0, x_rel)*(abs(x_rel)*bxs[14]-(1-abs(x_rel))*bxs[23])) - # (((bxs[5]+bxs[23])/2.0-bxs[14])*x_rel**2+((bxs[23]-bxs[5])/2.0)*x_rel+bxs[14])) * # (-y_rel**2+1) + # ( # #(min(0, x_rel)*(abs(x_rel)*bxs[17]-(1-abs(x_rel))*bxs[26])) - # (((bxs[8]+bxs[26])/2.0-bxs[17])*x_rel**2+((bxs[26]-bxs[8])/2.0)*x_rel+bxs[17])) * # 0.5*(y_rel**2+y_rel))*0.5*(z_rel**2+z_rel) #) # bx_interp = -( # ((-(((bxs[0]+bxs[18])/2.0-bxs[9])*x_rel**2+((bxs[18]-bxs[0])/2.0)*x_rel+bxs[9])) * # 0.5*(y_rel**2-y_rel) + # (-(((bxs[3]+bxs[21])/2.0-bxs[12])*x_rel**2+((bxs[21]-bxs[3])/2.0)*x_rel+bxs[12])) * # (-y_rel**2+1) + # (-(((bxs[6]+bxs[24])/2.0-bxs[15])*x_rel**2+((bxs[24]-bxs[6])/2.0)*x_rel+bxs[15])) * # 0.5*(y_rel**2+y_rel))*0.5*(z_rel**2-z_rel) + # ((-(((bxs[1]+bxs[19])/2.0-bxs[10])*x_rel**2+((bxs[19]-bxs[1])/2.0)*x_rel+bxs[10])) * # 0.5*(y_rel**2-y_rel) + # (-(((bxs[4]+bxs[22])/2.0-bxs[13])*x_rel**2+((bxs[22]-bxs[4])/2.0)*x_rel+bxs[13])) * # (-y_rel**2+1) + # (-(((bxs[7]+bxs[25])/2.0-bxs[16])*x_rel**2+((bxs[25]-bxs[7])/2.0)*x_rel+bxs[16])) * # 0.5*(y_rel**2+y_rel))*(-z_rel**2+1) + # ((-(((bxs[2]+bxs[20])/2.0-bxs[11])*x_rel**2+((bxs[20]-bxs[2])/2.0)*x_rel+bxs[11])) * # 0.5*(y_rel**2-y_rel) + # (-(((bxs[5]+bxs[23])/2.0-bxs[14])*x_rel**2+((bxs[23]-bxs[5])/2.0)*x_rel+bxs[14])) * # (-y_rel**2+1) + # (-(((bxs[8]+bxs[26])/2.0-bxs[17])*x_rel**2+((bxs[26]-bxs[8])/2.0)*x_rel+bxs[17])) * # 0.5*(y_rel**2+y_rel))*0.5*(z_rel**2+z_rel) # ) by_interp = -( ((-(((bys[0]+bys[6])/2.0-bys[3])*y_rel**2+((bys[6]-bys[0])/2.0)*y_rel+bys[3])) * 0.5*(x_rel**2-x_rel) + (-(((bys[9]+bys[15])/2.0-bys[12])*y_rel**2+((bys[15]-bys[9])/2.0)*y_rel+bys[12])) * (-x_rel**2+1) + (-(((bys[18]+bys[24])/2.0-bys[21])*y_rel**2+((bys[24]-bys[18])/2.0)*y_rel+bys[21])) * 0.5*(x_rel**2+x_rel))*0.5*(z_rel**2-z_rel) + ((-(((bys[1]+bys[7])/2.0-bys[4])*y_rel**2+((bys[7]-bys[1])/2.0)*y_rel+bys[4])) * 0.5*(x_rel**2-x_rel) + (-(((bys[10]+bys[16])/2.0-bys[13])*y_rel**2+((bys[16]-bys[10])/2.0)*y_rel+bys[13])) * (-x_rel**2+1) + (-(((bys[19]+bys[25])/2.0-bys[22])*y_rel**2+((bys[25]-bys[19])/2.0)*y_rel+bys[22])) * 0.5*(x_rel**2+x_rel))*(-z_rel**2+1) + ((-(((bys[2]+bys[8])/2.0-bys[5])*y_rel**2+((bys[8]-bys[2])/2.0)*y_rel+bys[5])) * 0.5*(x_rel**2-x_rel) + (-(((bys[11]+bys[17])/2.0-bys[14])*y_rel**2+((bys[17]-bys[11])/2.0)*y_rel+bys[14])) * (-x_rel**2+1) + (-(((bys[20]+bys[26])/2.0-bys[23])*y_rel**2+((bys[26]-bys[20])/2.0)*y_rel+bys[23])) * 0.5*(x_rel**2+x_rel))*0.5*(z_rel**2+z_rel) ) bz_interp = -( ((-(((bzs[0]+bzs[2])/2.0-bzs[1])*z_rel**2+((bzs[2]-bzs[0])/2.0)*z_rel+bzs[1])) * 0.5*(x_rel**2-x_rel) + (-(((bzs[9]+bzs[11])/2.0-bzs[10])*z_rel**2+((bzs[11]-bzs[9])/2.0)*z_rel+bzs[10])) * (-x_rel**2+1) + (-(((bzs[18]+bzs[20])/2.0-bzs[19])*z_rel**2+((bzs[20]-bzs[18])/2.0)*z_rel+bzs[19])) * 0.5*(x_rel**2+x_rel))*0.5*(y_rel**2-y_rel) + ((-(((bzs[3]+bzs[5])/2.0-bzs[4])*z_rel**2+((bzs[5]-bzs[3])/2.0)*z_rel+bzs[4])) * 0.5*(x_rel**2-x_rel) + (-(((bzs[12]+bzs[14])/2.0-bzs[13])*z_rel**2+((bzs[14]-bzs[12])/2.0)*z_rel+bzs[13])) * (-x_rel**2+1) + (-(((bzs[21]+bzs[23])/2.0-bzs[22])*z_rel**2+((bzs[23]-bzs[21])/2.0)*z_rel+bzs[22])) * 0.5*(x_rel**2+x_rel))*(-y_rel**2+1) + ((-(((bzs[6]+bzs[8])/2.0-bzs[7])*z_rel**2+((bzs[8]-bzs[6])/2.0)*z_rel+bzs[7])) * 0.5*(x_rel**2-x_rel) + (-(((bzs[15]+bzs[17])/2.0-bzs[16])*z_rel**2+((bzs[17]-bzs[15])/2.0)*z_rel+bzs[16])) * (-x_rel**2+1) + (-(((bzs[24]+bzs[26])/2.0-bzs[25])*z_rel**2+((bzs[26]-bzs[24])/2.0)*z_rel+bzs[25])) * 0.5*(x_rel**2+x_rel))*0.5*(y_rel**2+y_rel) ) if plot: init_notebook_mode() trace1 = go.Scatter3d( x=df_trimmed.X, y=df_trimmed.Y, z=df_trimmed.Z, mode='markers', marker=dict( size=12, line=dict( color='rgba(217, 217, 217, 0.14)', width=0.5 ), opacity=0.8, ), text=df_trimmed.Vertex, ) trace2 = go.Scatter3d( x=[x], y=[y], z=[z], mode='markers', marker=dict( color='rgb(127, 127, 127)', size=12, symbol='circle', line=dict( color='rgb(204, 204, 204)', width=1 ), opacity=0.9 ) ) data = [trace1, trace2] layout = go.Layout( margin=dict( l=0, r=0, b=0, t=0 ), ) fig = go.Figure(data=data, layout=layout) iplot(fig) return df_trimmed, [bx_interp, by_interp, bz_interp]
def interp_phi(df, x, y, z, df_alt=None, plot=True): """First thing's first. Plot the xyz point, and the immediate cube around it.""" df_trimmed = df.query('{0}<=X<={1} and {2}<=Y<={3} and {4}<=Z<={5}'.format( x-25, x+25, y-25, y+25, z-25, z+25)) df_trimmed = df_trimmed[['X', 'Y', 'Z', 'Bx', 'By', 'Bz']] df_true = df_trimmed.query('X=={0} and Y=={1} and Z=={2}'.format(x, y, z)) if len(df_true) == 1: bx_interp = df_true.Bx by_interp = df_true.By bz_interp = df_true.Bz else: if len(df_trimmed.X.unique()) == len(df_trimmed.Y.unique()) == len(df_trimmed.Z.unique()): df_trimmed = df_trimmed.query('X!={0} and Y!={1} and Z!={2}'.format( x, y, z)) else: xs = np.sort(df_trimmed.X.unique()) ys = np.sort(df_trimmed.Y.unique()) zs = np.sort(df_trimmed.Z.unique()) df_trimmed = df_trimmed.query( '(X=={0} or X=={1}) and (Y=={2} or Y=={3}) and (Z=={4} or Z=={5})'.format( xs[0], xs[1], ys[0], ys[1], zs[0], zs[1])) df_trimmed = df_trimmed.sort_values(['X', 'Y', 'Z']).reset_index(drop=True) # indices: 0 1 2 3 4 5 6 7 df_trimmed['Vertex'] = ['p000', 'p001', 'p010', 'p011', 'p100', 'p101', 'p110', 'p111'] x_rel = (x - df_trimmed.ix[0].X) / (df_trimmed.ix[4].X-df_trimmed.ix[0].X) y_rel = (y - df_trimmed.ix[0].Y) / (df_trimmed.ix[2].Y-df_trimmed.ix[0].Y) z_rel = (z - df_trimmed.ix[0].Z) / (df_trimmed.ix[1].Z-df_trimmed.ix[0].Z) # print x_rel bx_interp = ((y_rel)*(z_rel)*(x_rel*df_trimmed.ix[7].Bx + (1-x_rel)*df_trimmed.ix[3].Bx) + (1-y_rel) * (z_rel) * (x_rel*df_trimmed.ix[5].Bx + (1-x_rel)*df_trimmed.ix[1].Bx) + (y_rel) * (1-z_rel) * (x_rel*df_trimmed.ix[6].Bx + (1-x_rel)*df_trimmed.ix[2].Bx) + (1-y_rel) * (1-z_rel)*(x_rel*df_trimmed.ix[4].Bx + (1-x_rel)*df_trimmed.ix[0].Bx)) by_interp = ((x_rel)*(z_rel)*(y_rel*df_trimmed.ix[7].By + (1-y_rel)*df_trimmed.ix[5].By) + (1-x_rel) * (z_rel) * (y_rel*df_trimmed.ix[3].By + (1-y_rel)*df_trimmed.ix[1].By) + (x_rel) * (1-z_rel) * (y_rel*df_trimmed.ix[6].By + (1-y_rel)*df_trimmed.ix[4].By) + (1-x_rel) * (1-z_rel)*(y_rel*df_trimmed.ix[2].By + (1-y_rel)*df_trimmed.ix[0].By)) bz_interp = ((x_rel)*(y_rel)*(z_rel*df_trimmed.ix[7].Bz + (1-z_rel)*df_trimmed.ix[6].Bz) + (1-x_rel) * (y_rel) * (z_rel*df_trimmed.ix[3].Bz + (1-z_rel)*df_trimmed.ix[2].Bz) + (x_rel) * (1-y_rel) * (z_rel*df_trimmed.ix[5].Bz + (1-z_rel)*df_trimmed.ix[4].Bz) + (1-x_rel) * (1-y_rel)*(z_rel*df_trimmed.ix[1].Bz + (1-z_rel)*df_trimmed.ix[0].Bz)) if plot: init_notebook_mode() trace1 = go.Scatter3d( x=df_trimmed.X, y=df_trimmed.Y, z=df_trimmed.Z, mode='markers', marker=dict( size=12, line=dict( color='rgba(217, 217, 217, 0.14)', width=0.5 ), opacity=0.8, ), text=df_trimmed.Vertex, ) trace2 = go.Scatter3d( x=[x], y=[y], z=[z], mode='markers', marker=dict( color='rgb(127, 127, 127)', size=12, symbol='circle', line=dict( color='rgb(204, 204, 204)', width=1 ), opacity=0.9 ) ) data = [trace1, trace2] layout = go.Layout( margin=dict( l=0, r=0, b=0, t=0 ), ) fig = go.Figure(data=data, layout=layout) iplot(fig) return df_trimmed, [bx_interp, by_interp, bz_interp]
def interp_phi_cubic(df, x, y, z, plot=False, mode='lacey', shift=0): if shift == 0: df_trimmed = df.query('{0}<=X<{1} and {2}<=Y<{3} and {4}<=Z<{5}'.format( x-50, x+50, y-50, y+50, z-50, z+50)) df_trimmed = df_trimmed[['X', 'Y', 'Z', 'Bx', 'By', 'Bz']] df_trimmed = df_trimmed.sort_values(['X', 'Y', 'Z']).reset_index(drop=True) elif shift == -1: df_trimmed = df.query('{0}<=X<{1} and {2}<=Y<{3} and {4}<=Z<{5}'.format( x-25, x+75, y-50, y+50, z-50, z+50)) df_trimmed = df_trimmed[['X', 'Y', 'Z', 'Bx', 'By', 'Bz']] df_trimmed = df_trimmed.sort_values(['X', 'Y', 'Z']).reset_index(drop=True) elif shift == 1: df_trimmed = df.query('{0}<=X<{1} and {2}<=Y<{3} and {4}<=Z<{5}'.format( x-75, x+25, y-50, y+50, z-50, z+50)) df_trimmed = df_trimmed[['X', 'Y', 'Z', 'Bx', 'By', 'Bz']] df_trimmed = df_trimmed.sort_values(['X', 'Y', 'Z']).reset_index(drop=True) else: raise KeyError('wrong shift') #df_true = df_trimmed.query('X=={0} and Y=={1} and Z=={2}'.format(x, y, z)) #if len(df_true) == 1: #pass # bx_interp = df_true.Bx # by_interp = df_true.By # bz_interp = df_true.Bz if False: pass else: df_trimmed['Vertex'] = [ # 0 1 2 3 4 5 6 7 '-1-1-1' , '-1-10' , '-1-11' , '-1-12' , '-10-1' , '-100' , '-101' , '-102' , # 8 9 10 11 12 13 14 15 '-11-1' , '-110' , '-111' , '-112' , '-12-1' , '-120' , '-121' , '-122' , # 16 17 18 19 20 21 22 23 '0-1-1' , '0-10' , '0-11' , '0-12' , '00-1' , '000' , '001' , '002' , # 24 25 26 27 28 29 30 31 '01-1' , '010' , '011' , '012' , '02-1' , '020' , '021' , '022' , # 32 33 34 35 36 37 38 39 '1-1-1' , '1-10' , '1-11' , '1-12' , '10-1' , '100' , '101' , '102' , # 40 41 42 43 44 45 46 47 '11-1' , '110' , '111' , '112' , '12-1' , '120' , '121' , '122' , # 48 49 50 51 52 53 54 55 '2-1-1' , '2-10' , '2-11' , '2-12' , '20-1' , '200' , '201' , '202' , # 56 57 58 59 60 61 62 63 '21-1' , '210' , '211' , '212' , '22-1' , '220' , '221' , '222' , ] index_list = list(range(0,64)) vertex_dict = dict(list(zip(df_trimmed.Vertex, index_list))) # Define some lagrange polynomials def lg_mone(n): return -(n**3-3*n**2+2*n)/6.0 def lg_zero(n): return (n**3-2*n**2-n+2)/2.0 def lg_one(n): return -(n**3-n**2-2*n)/2.0 def lg_two(n): return (n**3-n)/6.0 # Numerical integration def _int_methods(b, rel, *verts): if len(verts) == 2: return (b.ix[vertex_dict[verts[0]]] + b.ix[vertex_dict[verts[1]]])/2.0 elif len(verts) == 3: return (b.ix[vertex_dict[verts[0]]] + 4*b.ix[vertex_dict[verts[1]]] + b.ix[vertex_dict[verts[2]]])/3.0 else: if mode == 'lacey': return (b.ix[vertex_dict[verts[0]]] + 3*b.ix[vertex_dict[verts[1]]] + 3*b.ix[vertex_dict[verts[2]]] + b.ix[vertex_dict[verts[3]]])*(3.0/8.0) else: A = (-3*b.ix[vertex_dict[verts[2]]] - b.ix[vertex_dict[verts[0]]] + 3*b.ix[vertex_dict[verts[1]]] + b.ix[vertex_dict[verts[3]]])/6.0 B = (b.ix[vertex_dict[verts[0]]] + b.ix[vertex_dict[verts[2]]] - 2*b.ix[vertex_dict[verts[1]]])/2.0 C = (6*b.ix[vertex_dict[verts[2]]] - 2*b.ix[vertex_dict[verts[0]]] - 3*b.ix[vertex_dict[verts[1]]] - b.ix[vertex_dict[verts[3]]])/6.0 D = b.ix[vertex_dict[verts[1]]] return (A*rel**3 + B*rel**2 + C*rel + D) def num_int(b, rel, x, y, z): if isinstance(x, collections.Sequence): verts = [str(i)+str(y)+str(z) for i in range(x[0], x[-1]+1)] elif isinstance(y, collections.Sequence): verts = [str(x)+str(i)+str(z) for i in range(y[0], y[-1]+1)] elif isinstance(z, collections.Sequence): verts = [str(x)+str(y)+str(i) for i in range(z[0], z[-1]+1)] else: raise AttributeError('exactly one arg in num_int must be a collection') return _int_methods(b, rel, *verts) def int_collection(b, rel, x, y, z): if x == 'var': int1 = num_int(b, rel, (-1, 2), y, z) int2 = num_int(b, rel, (0, 1), y, z) int3 = num_int(b, rel, (-1, 0), y, z) int4 = int2 int5 = num_int(b, rel, (-1, 1), y, z) int6 = int2 int7 = num_int(b, rel, (1, 2), y, z) elif y == 'var': int1 = num_int(b, rel, x, (-1, 2), z) int2 = num_int(b, rel, x, (0, 1), z) int3 = num_int(b, rel, x, (-1, 0), z) int4 = int2 int5 = num_int(b, rel, x, (-1, 1), z) int6 = int2 int7 = num_int(b, rel, x, (1, 2), z) else: int1 = num_int(b, rel, x, y, (-1, 2)) int2 = num_int(b, rel, x, y, (0, 1)) int3 = num_int(b, rel, x, y, (-1, 0)) int4 = int2 int5 = num_int(b, rel, x, y, (-1, 1)) int6 = int2 int7 = num_int(b, rel, x, y, (1, 2)) if mode == 'lacey': return ((-rel**2/2.0)*int1 + (3*rel**2/2.0)*int2 + rel*int3 - rel*int4 - (1/3.0)*int5 - 0.5*int6 + (1/6.0)*int7) else: return -int1 x_rel = (x - df_trimmed.ix[21].X) / (25.0) y_rel = (y - df_trimmed.ix[21].Y) / (25.0) z_rel = (z - df_trimmed.ix[21].Z) / (25.0) # print x_rel, y_rel, z_rel bxs = df_trimmed.Bx bys = df_trimmed.By bzs = df_trimmed.Bz bx_interp = -(lg_mone(z_rel)*(lg_mone(y_rel)*(int_collection(bxs, x_rel, 'var', -1, -1)) + lg_zero(y_rel)*(int_collection(bxs, x_rel, 'var', 0, -1)) + lg_one(y_rel)*(int_collection(bxs, x_rel, 'var', 1, -1)) + lg_two(y_rel)*(int_collection(bxs, x_rel, 'var', 2, -1))) + lg_zero(z_rel)*(lg_mone(y_rel)*(int_collection(bxs, x_rel, 'var', -1, 0)) + lg_zero(y_rel)*(int_collection(bxs, x_rel, 'var', 0, 0)) + lg_one(y_rel)*(int_collection(bxs, x_rel, 'var', 1, 0)) + lg_two(y_rel)*(int_collection(bxs, x_rel, 'var', 2, 0))) + lg_one(z_rel)*(lg_mone(y_rel)*(int_collection(bxs, x_rel, 'var', -1, 1)) + lg_zero(y_rel)*(int_collection(bxs, x_rel, 'var', 0, 1)) + lg_one(y_rel)*(int_collection(bxs, x_rel, 'var', 1, 1)) + lg_two(y_rel)*(int_collection(bxs, x_rel, 'var', 2, 1))) + lg_two(z_rel)*(lg_mone(y_rel)*(int_collection(bxs, x_rel, 'var', -1, 2)) + lg_zero(y_rel)*(int_collection(bxs, x_rel, 'var', 0, 2)) + lg_one(y_rel)*(int_collection(bxs, x_rel, 'var', 1, 2)) + lg_two(y_rel)*(int_collection(bxs, x_rel, 'var', 2, 2))) ) by_interp = -(lg_mone(z_rel)*(lg_mone(x_rel)*(int_collection(bys, y_rel, -1, 'var', -1)) + lg_zero(x_rel)*(int_collection(bys, y_rel, 0, 'var', -1)) + lg_one(x_rel)*(int_collection(bys, y_rel, 1, 'var', -1)) + lg_two(x_rel)*(int_collection(bys, y_rel, 2, 'var', -1))) + lg_zero(z_rel)*(lg_mone(x_rel)*(int_collection(bys, y_rel, -1, 'var', 0)) + lg_zero(x_rel)*(int_collection(bys, y_rel, 0, 'var', 0)) + lg_one(x_rel)*(int_collection(bys, y_rel, 1, 'var', 0)) + lg_two(x_rel)*(int_collection(bys, y_rel, 2, 'var', 0))) + lg_one(z_rel)*(lg_mone(x_rel)*(int_collection(bys, y_rel, -1, 'var', 1)) + lg_zero(x_rel)*(int_collection(bys, y_rel, 0, 'var', 1)) + lg_one(x_rel)*(int_collection(bys, y_rel, 1, 'var', 1)) + lg_two(x_rel)*(int_collection(bys, y_rel, 2, 'var', 1))) + lg_two(z_rel)*(lg_mone(x_rel)*(int_collection(bys, y_rel, -1, 'var', 2)) + lg_zero(x_rel)*(int_collection(bys, y_rel, 0, 'var', 2)) + lg_one(x_rel)*(int_collection(bys, y_rel, 1, 'var', 2)) + lg_two(x_rel)*(int_collection(bys, y_rel, 2, 'var', 2))) ) bz_interp = -(lg_mone(y_rel)*(lg_mone(x_rel)*(int_collection(bzs, z_rel, -1, -1, 'var')) + lg_zero(x_rel)*(int_collection(bzs, z_rel, 0, -1, 'var')) + lg_one(x_rel)*(int_collection(bzs, z_rel, 1, -1, 'var')) + lg_two(x_rel)*(int_collection(bzs, z_rel, 2, -1, 'var'))) + lg_zero(y_rel)*(lg_mone(x_rel)*(int_collection(bzs, z_rel, -1, 0, 'var')) + lg_zero(x_rel)*(int_collection(bzs, z_rel, 0, 0, 'var')) + lg_one(x_rel)*(int_collection(bzs, z_rel, 1, 0, 'var')) + lg_two(x_rel)*(int_collection(bzs, z_rel, 2, 0, 'var'))) + lg_one(y_rel)*(lg_mone(x_rel)*(int_collection(bzs, z_rel, -1, 1, 'var')) + lg_zero(x_rel)*(int_collection(bzs, z_rel, 0, 1, 'var')) + lg_one(x_rel)*(int_collection(bzs, z_rel, 1, 1, 'var')) + lg_two(x_rel)*(int_collection(bzs, z_rel, 2, 1, 'var'))) + lg_two(y_rel)*(lg_mone(x_rel)*(int_collection(bzs, z_rel, -1, 2, 'var')) + lg_zero(x_rel)*(int_collection(bzs, z_rel, 0, 2, 'var')) + lg_one(x_rel)*(int_collection(bzs, z_rel, 1, 2, 'var')) + lg_two(x_rel)*(int_collection(bzs, z_rel, 2, 2, 'var'))) ) if plot: init_notebook_mode() trace1 = go.Scatter3d( x=df_trimmed.X, y=df_trimmed.Y, z=df_trimmed.Z, mode='markers', marker=dict( size=12, line=dict( color='rgba(217, 217, 217, 0.14)', width=0.5 ), opacity=0.8, ), text=df_trimmed.Vertex, ) trace2 = go.Scatter3d( x=[x], y=[y], z=[z], mode='markers', marker=dict( color='rgb(127, 127, 127)', size=12, symbol='circle', line=dict( color='rgb(204, 204, 204)', width=1 ), opacity=0.9 ) ) data = [trace1, trace2] layout = go.Layout( margin=dict( l=0, r=0, b=0, t=0 ), ) fig = go.Figure(data=data, layout=layout) iplot(fig) print(x_rel) return df_trimmed, [bx_interp, by_interp, bz_interp]