def setup_module(m_args):
    """Run the simulation up to module E0 and save dict_values before and after evaluation"""
    if os.path.exists(TEST_OUTPUT_PATH):
        shutil.rmtree(TEST_OUTPUT_PATH, ignore_errors=True)
    user_input = A0.process_user_arguments()

    logging.debug("Accessing script: B0_data_input_json")
    dict_values = B0.load_json(
        user_input[PATH_INPUT_FILE],
        path_input_folder=user_input[PATH_INPUT_FOLDER],
        path_output_folder=user_input[PATH_OUTPUT_FOLDER],
        move_copy=False,
    )
    logging.debug("Accessing script: C0_data_processing")
    C0.all(dict_values)

    logging.debug("Accessing script: D0_modelling_and_optimization")
    results_meta, results_main = D0.run_oemof(dict_values)

    with open(DICT_BEFORE, "wb") as handle:
        pickle.dump(dict_values, handle, protocol=pickle.HIGHEST_PROTOCOL)

    logging.debug("Accessing script: E0_evaluation")
    E0.evaluate_dict(dict_values, results_main, results_meta)

    with open(DICT_AFTER, "wb") as handle:
        pickle.dump(dict_values, handle, protocol=pickle.HIGHEST_PROTOCOL)
示例#2
0
    def setup_class(m_args):
        """Run the simulation up to module E0 and prepare bus_data for E1"""
        if os.path.exists(TEST_OUTPUT_PATH):
            shutil.rmtree(TEST_OUTPUT_PATH, ignore_errors=True)

        logging.debug("Accessing script: A0_initialization")
        user_input = A0.process_user_arguments()

        A1.create_input_json(input_directory=os.path.join(
            user_input[PATH_INPUT_FOLDER], CSV_ELEMENTS))

        logging.debug("Accessing script: B0_data_input_json")
        dict_values = B0.load_json(
            user_input[PATH_INPUT_FILE],
            path_input_folder=user_input[PATH_INPUT_FOLDER],
            path_output_folder=user_input[PATH_OUTPUT_FOLDER],
            move_copy=True,
            set_default_values=True,
        )
        logging.debug("Accessing script: C0_data_processing")
        C0.all(dict_values)

        logging.debug("Accessing script: D0_modelling_and_optimization")
        results_meta, results_main = D0.run_oemof(dict_values)

        bus_data = {}
        # Store all information related to busses in bus_data
        for bus in dict_values[ENERGY_BUSSES]:
            # Read all energy flows from busses
            bus_data.update({bus: solph.views.node(results_main, bus)})

        # Pickle dump bus data
        with open(BUS_DATA_DUMP, "wb") as handle:
            pickle.dump(bus_data, handle, protocol=pickle.HIGHEST_PROTOCOL)
def run_simulation(json_dict, **kwargs):
    r"""
     Starts MVS tool simulation from an input json file

     Parameters
    -----------
     json_dict: dict
         json from http request

     Other Parameters
     ----------------
     pdf_report: bool, optional
         Can generate an automatic pdf report of the simulation's results (True) or not (False)
         Default: False.
     display_output : str, optional
         Sets the level of displayed logging messages.
         Options: "debug", "info", "warning", "error". Default: "info".
     lp_file_output : bool, optional
         Specifies whether linear equation system generated is saved as lp file.
         Default: False.
    """

    welcome_text = (
        "\n \n Multi-Vector Simulation Tool (MVS) V" + version_num + " " +
        "\n Version: " + version_date + " " +
        '\n Part of the toolbox of H2020 project "E-LAND", ' +
        "Integrated multi-vector management system for Energy isLANDs" +
        "\n Coded at: Reiner Lemoine Institute (Berlin) " +
        "\n Contributors: Martha M. Hoffmann \n \n ")

    logging.info(welcome_text)

    logging.debug("Accessing script: B0_data_input_json")
    dict_values = data_input.convert_from_json_to_special_types(json_dict)

    print("")
    logging.debug("Accessing script: C0_data_processing")
    data_processing.all(dict_values)

    print("")
    logging.debug("Accessing script: D0_modelling_and_optimization")
    results_meta, results_main = modelling.run_oemof(dict_values)

    print("")
    logging.debug("Accessing script: E0_evaluation")
    evaluation.evaluate_dict(dict_values, results_main, results_meta)

    logging.debug("Convert results to json")

    epa_dict_values = data_parser.convert_mvs_params_to_epa(dict_values)

    output_processing.select_essential_results(epa_dict_values)

    json_values = output_processing.store_as_json(epa_dict_values)

    return json.loads(json_values)
        def run_parts(margs):
            if os.path.exists(TEST_OUTPUT_PATH):
                shutil.rmtree(TEST_OUTPUT_PATH, ignore_errors=True)
            user_input = A0.process_user_arguments()

            logging.debug("Accessing script: B0_data_input_json")
            dict_values = B0.load_json(
                user_input[PATH_INPUT_FILE],
                path_input_folder=user_input[PATH_INPUT_FOLDER],
                path_output_folder=user_input[PATH_OUTPUT_FOLDER],
                move_copy=False,
            )
            logging.debug("Accessing script: C0_data_processing")
            C0.all(dict_values)

            logging.debug("Run parts of D0_modelling_and_optimization")
            model, dict_model = D0.model_building.initialize(dict_values)
            model = D0.model_building.adding_assets_to_energysystem_model(
                dict_values, dict_model, model)
            return dict_values, model, dict_model
示例#5
0
def main(**kwargs):
    r"""
    Starts MVS tool simulations.

    Other Parameters
    ----------------
    overwrite : bool, optional
        Determines whether to replace existing results in `path_output_folder`
        with the results of the current simulation (True) or not (False).
        Default: False.
    pdf_report: bool, optional
        Can generate an automatic pdf report of the simulation's results (True) or not (False)
        Default: False.
    input_type : str, optional
        Defines whether the input is taken from the `mvs_config.json` file
        ("json") or from csv files ('csv') located within
        <path_input_folder>/csv_elements/. Default: 'json'.
    path_input_folder : str, optional
        The path to the directory where the input CSVs/JSON files are located.
        Default: 'inputs/'.
    path_output_folder : str, optional
        The path to the directory where the results of the simulation such as
        the plots, time series, results JSON files are saved by MVS E-Lands.
        Default: 'MVS_outputs/'
    display_output : str, optional
        Sets the level of displayed logging messages.
        Options: "debug", "info", "warning", "error". Default: "info".
    lp_file_output : bool, optional
        Specifies whether linear equation system generated is saved as lp file.
        Default: False.

    """

    welcome_text = (
        "\n \n Multi-Vector Simulation Tool (MVS) V" + version_num + " " +
        "\n Version: " + version_date + " " +
        '\n Part of the toolbox of H2020 project "E-LAND", ' +
        "Integrated multi-vector management system for Energy isLANDs" +
        "\n Coded at: Reiner Lemoine Institute (Berlin) " +
        "\n Contributors: Martha M. Hoffmann \n \n ")

    logging.debug("Accessing script: A0_initialization")

    user_input = A0.process_user_arguments(welcome_text=welcome_text, **kwargs)

    # Read all inputs
    #    print("")
    #    # todo: is user input completely used?
    #    dict_values = data_input.load_json(user_input[PATH_INPUT_FILE ])

    move_copy_config_file = False

    if user_input[INPUT_TYPE] == CSV_EXT:
        logging.debug("Accessing script: A1_csv_to_json")
        move_copy_config_file = True
        A1.create_input_json(input_directory=os.path.join(
            user_input[PATH_INPUT_FOLDER], CSV_ELEMENTS))

    logging.debug("Accessing script: B0_data_input_json")
    dict_values = B0.load_json(
        user_input[PATH_INPUT_FILE],
        path_input_folder=user_input[PATH_INPUT_FOLDER],
        path_output_folder=user_input[PATH_OUTPUT_FOLDER],
        move_copy=move_copy_config_file,
        set_default_values=True,
    )
    F0.store_as_json(
        dict_values,
        dict_values[SIMULATION_SETTINGS][PATH_OUTPUT_FOLDER_INPUTS],
        MVS_CONFIG,
    )

    print("")
    logging.debug("Accessing script: C0_data_processing")
    C0.all(dict_values)

    F0.store_as_json(
        dict_values,
        dict_values[SIMULATION_SETTINGS][PATH_OUTPUT_FOLDER],
        JSON_PROCESSED,
    )

    if "path_pdf_report" in user_input or "path_png_figs" in user_input:
        save_energy_system_graph = True
    else:
        save_energy_system_graph = False

    print("")
    logging.debug("Accessing script: D0_modelling_and_optimization")
    results_meta, results_main = D0.run_oemof(
        dict_values,
        save_energy_system_graph=save_energy_system_graph,
    )

    print("")
    logging.debug("Accessing script: E0_evaluation")
    E0.evaluate_dict(dict_values, results_main, results_meta)

    logging.debug("Accessing script: F0_outputs")
    F0.evaluate_dict(
        dict_values,
        path_pdf_report=user_input.get("path_pdf_report", None),
        path_png_figs=user_input.get("path_png_figs", None),
    )
    return 1
示例#6
0
def run_simulation(json_dict, epa_format=True, **kwargs):
    r"""
     Starts MVS tool simulation from an input json file

     Parameters
    -----------
     json_dict: dict
         json from http request
     epa_format: bool, optional
         Specifies whether the output is formatted for EPA standards
         Default: True

     Other Parameters
     ----------------
     pdf_report: bool, optional
         Can generate an automatic pdf report of the simulation's results (True) or not (False)
         Default: False.
     display_output : str, optional
         Sets the level of displayed logging messages.
         Options: "debug", "info", "warning", "error". Default: "info".
     lp_file_output : bool, optional
         Specifies whether linear equation system generated is saved as lp file.
         Default: False.

    """
    display_output = kwargs.get("display_output", None)

    if display_output == "debug":
        screen_level = logging.DEBUG
    elif display_output == "info":
        screen_level = logging.INFO
    elif display_output == "warning":
        screen_level = logging.WARNING
    elif display_output == "error":
        screen_level = logging.ERROR
    else:
        screen_level = logging.INFO

    # Define logging settings and path for saving log
    logger.define_logging(screen_level=screen_level)

    welcome_text = (
        "\n \n Multi-Vector Simulation Tool (MVS) V" + version_num + " " +
        "\n Version: " + version_date + " " +
        '\n Part of the toolbox of H2020 project "E-LAND", ' +
        "Integrated multi-vector management system for Energy isLANDs" +
        "\n Coded at: Reiner Lemoine Institute (Berlin) " +
        "\n Reference: https://zenodo.org/record/4610237 \n \n ")

    logging.info(welcome_text)

    logging.debug("Accessing script: B0_data_input_json")
    dict_values = B0.convert_from_json_to_special_types(json_dict)

    print("")
    logging.debug("Accessing script: C0_data_processing")
    C0.all(dict_values)

    print("")
    logging.debug("Accessing script: D0_modelling_and_optimization")
    results_meta, results_main = D0.run_oemof(dict_values)

    print("")
    logging.debug("Accessing script: E0_evaluation")
    E0.evaluate_dict(dict_values, results_main, results_meta)

    logging.debug("Convert results to json")

    if epa_format is True:
        epa_dict_values = data_parser.convert_mvs_params_to_epa(dict_values)

        json_values = F0.store_as_json(epa_dict_values)
        answer = json.loads(json_values)

    else:
        answer = dict_values

    return answer