decision_tree = DecisionTree() random_forest = RandomForest(n_estimators=150) support_vector_machine = SupportVectorMachine(C=1, kernel=rbf_kernel) # ........ # TRAIN # ........ print "Training:" print "\tAdaboost" adaboost.fit(X_train, rescaled_y_train) print "\tNaive Bayes" naive_bayes.fit(X_train, y_train) print "\tLogistic Regression" logistic_regression.fit(X_train, y_train) print "\tMultilayer Perceptron" mlp.fit(X_train, y_train, n_iterations=20000, learning_rate=0.1) print "\tPerceptron" perceptron.fit(X_train, y_train) print "\tDecision Tree" decision_tree.fit(X_train, y_train) print "\tRandom Forest" random_forest.fit(X_train, y_train) print "\tSupport Vector Machine" support_vector_machine.fit(X_train, rescaled_y_train) # ......... # PREDICT # ......... y_pred = {} y_pred["Adaboost"] = adaboost.predict(X_test) y_pred["Naive Bayes"] = naive_bayes.predict(X_test)
# ........ # TRAIN # ........ print("Training:") print("\tAdaboost") adaboost.fit(X_train, rescaled_y_train) print("\tDecision Tree") decision_tree.fit(X_train, y_train) print("\tGradient Boosting") gbc.fit(X_train, y_train) print("\tLDA") lda.fit(X_train, y_train) print("\tLogistic Regression") logistic_regression.fit(X_train, y_train) print("\tMultilayer Perceptron") mlp.fit(X_train, y_train) print("\tNaive Bayes") naive_bayes.fit(X_train, y_train) print("\tPerceptron") perceptron.fit(X_train, y_train) print("\tRandom Forest") random_forest.fit(X_train, y_train) print("\tSupport Vector Machine") support_vector_machine.fit(X_train, rescaled_y_train) print("\tXGBoost") xgboost.fit(X_train, y_train) # ......... # PREDICT # ......... y_pred = {}
(1 - TEST_SET_PC))) print("Test set samples: %d (%d%%)" % (len(X_test), 100 * TEST_SET_PC)) mlp = MultilayerPerceptron(input_size=784, layers_size=HIDDEN_LAYERS + [10], layers_activation="sigmoid") print("\nInitial accuracy (training set): %.2f%%" % (100 * accuracy(mlp.predict(X_train), Y_train))) print("Initial accuracy (test set): %.2f%%" % (100 * accuracy(mlp.predict(X_test), Y_test))) print("\nStarting training session...") mlp.fit( data=X_train, labels=Y_train, cost_function=MeanSquaredError(), epochs=TRAINING_EPOCHS, learning_rate=LEARNING_RATE, batch_size=32, gradient_checking=False, momentum_term=MOMENTUM_TERM, ) print("\nAccuracy (training set): %.2f%%" % (100 * accuracy(mlp.predict(X_train), Y_train))) print("Accuracy (test set): %.2f%%\n" % (100 * accuracy(mlp.predict(X_test), Y_test))) print( "Opening evaluation window...\nTo select a new image, press SPACE.\n") evaluation_screen(X_test, Y_test, mlp.predict(X_test).transpose())
from tensorflow.examples.tutorials.mnist import input_data from multilayer_perceptron import MultilayerPerceptron mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) mlp = MultilayerPerceptron() mlp.fit(mnist.train.images, mnist.train.labels)
# ........ # TRAIN # ........ print ("Training:") print ("\tAdaboost") adaboost.fit(X_train, rescaled_y_train) print ("\tDecision Tree") decision_tree.fit(X_train, y_train) print ("\tGradient Boosting") gbc.fit(X_train, y_train) print ("\tLDA") lda.fit(X_train, y_train) print ("\tLogistic Regression") logistic_regression.fit(X_train, y_train) print ("\tMultilayer Perceptron") mlp.fit(X_train, y_train) print ("\tNaive Bayes") naive_bayes.fit(X_train, y_train) print ("\tPerceptron") perceptron.fit(X_train, y_train) print ("\tRandom Forest") random_forest.fit(X_train, y_train) print ("\tSupport Vector Machine") support_vector_machine.fit(X_train, rescaled_y_train) print ("\tXGBoost") xgboost.fit(X_train, y_train) # ......... # PREDICT