p.start() if (not args.BlockMonitor) and i % 20 == 0 and i != 0: # print(psutil.virtual_memory()[2]) sleep(5) if (not args.BlockMonitor) and psutil.virtual_memory()[2] > 20: sleep(1) # printlock.release() for p in processes: p.join() # transform queue to lists foundmota = cvgenetic.Queue_to_list(foundmota) IDs = cvgenetic.Queue_to_list(IDs) Best_mota = max(foundmota) Best_ID = IDs[foundmota.index(Best_mota)] print("Best multiple object tracking accuracy (MOTA)", Best_mota) print("ID:", Best_ID) stop = timeit.default_timer() print(str(stop - start) + "s") # use matplot to print calculated mota with its ids plt.plot(foundmota, IDs, 'bo') plt.plot(Best_mota, Best_ID, 'ro') plt.axis([-1, 1, -1, args.lastID + 1]) plt.xlabel('mota') plt.ylabel('ID') plt.title(b'Best MOTA: ' + str(Best_mota) + '\nwith ID: ' + str(Best_ID)) plt.show()
class ChunkHandler: """ Helper class for loading, sampling and transforming chunks of different objects. Objects must be instances of a MorphX class. Uses :func:`morphx.preprocessing.splitting.split` to generate chunking information (or loads it if it is already available for the given chunk_size. :attr:`specific` defines two different modes. If the flag is False, the chunks are accessed rather randomly, not preserving their original position in the object. This mode can be used for training purposes. If :attr:`specific` is True, the chunks ca be requested from a specific index within a specific object. After processing the chunks, the results can then be mapped back to that position using :func:`map_predictions`. This mode can be used during inference when predictions of chunk are generated and should be inserted into the original object. """ def __init__(self, data: Union[str, SuperSegmentationDataset], sample_num: int, density_mode: bool = True, bio_density: float = None, tech_density: int = None, ctx_size: int = None, transform: clouds.Compose = clouds.Compose( [clouds.Identity()]), specific: bool = False, data_type: str = 'ce', obj_feats: dict = None, label_mappings: List[Tuple[int, int]] = None, hybrid_mode: bool = False, splitting_redundancy: int = 1, label_remove: List[int] = None, sampling: bool = True, force_split: bool = False, padding: int = None, verbose: bool = False, split_on_demand: bool = False, split_jitter: int = 0, epoch_size: int = None, workers: int = 2, voxel_sizes: Optional[dict] = None, ssd_exclude: List[int] = None, ssd_include: List[int] = None, ssd_labels: str = None, exclude_borders: int = 0, rebalance: dict = None): """ Args: data: Path to objects saved as pickle files. Existing chunking information would be available in the folder 'splitted' at this location. sample_num: Number of vertices which should be sampled from the surface of each chunk. Should be equal to the capacity of the given network architecture. tech_density: poisson sampling density with which data set was preprocessed in point/um² bio_density: chunk sampling density in point/um². This determines the size of the chunks. If previous chunking information should be used, this information must be available in the splitted/ folder with 'bio_density' as name. transform: Transformations which should be applied to the chunks before returning them (e.g. see :func:`morphx.processing.clouds.Compose`) specific: Flag for setting mode of requesting specific or rather randomly drawn chunks. data_type: Type of dataset, 'ce': CloudEnsembles, 'hc': HybridClouds obj_feats: Only used when inputs are CloudEnsembles. Dict with feature array (1, n) keyed by the name of the corresponding object in the CloudEnsemble. The HybridCloud gets addressed with 'hc'. label_mappings: list of labels which should get replaced by other labels. E.g. [(1, 2), (3, 2)] means that the labels 1 and 3 will get replaced by 3. splitting_redundancy: indicates how many times each skeleton node is included in different contexts. label_remove: List of labels indicating which nodes should be removed from the dataset. This is is independent from the label_mappings, as the label removal is done during splitting. sampling: Flag for random sampling from the extracted subsets. force_split: Split dataset again even if splitting information exists. padding: add padded points if a subset contains less points than there should be sampled. verbose: Return additional information about size of subsets. split_on_demand: Do not generate splitting information in advance, but rather generate chunks on the fly. split_jitter: Used only if split_on_demand = True. Adds jitter to the context size of the generated chunks. epoch_size: Parameter for epoch size that can be used when dataset size is unknown and epoch size should somehow be bounded. workers: Number of workers in case of ssd dataset. voxel_sizes: Voxelization options in case of ssd dataset use. Given as dict with voxel sizes keyed by cell part identifier (e.g. 'sv' or 'mi'). exclude_borders: Offset radius (chunk_size - exclude_border) for excluding border regions of chunks from loss calculation. rebalance: dict for rebalancing of dataset if certain classes dominate. dict contains factor keyed by labels where the factor indicate how often the labels should get resampled. This was introduced for rebalancing the CMN ads dataset. Now this is outcommented and replaced by a hacky version for terminals. """ if type(data) == SuperSegmentationDataset: self._data = data else: self._data = os.path.expanduser(data) if not os.path.exists(self._data): os.makedirs(self._data) # --- split cells into chunks and save this split information to file for later loading --- if not split_on_demand: if not os.path.exists(self._data + 'splitted/'): os.makedirs(self._data + 'splitted/') self._splitfile = '' if density_mode: if bio_density is None or tech_density is None: raise ValueError( "Density mode requires bio_density and tech_density" ) self._splitfile = f'{self._data}splitted/d{bio_density}_p{sample_num}' \ f'_r{splitting_redundancy}_lr{label_remove}.pkl' else: if ctx_size is None: raise ValueError("Context mode requires chunk_size.") self._splitfile = f'{self._data}splitted/s{ctx_size}_r{splitting_redundancy}_lr{label_remove}.pkl' self._splitted_objs = None orig_splitfile = self._splitfile while os.path.exists(self._splitfile): if not force_split: # continue with existing split information with open(self._splitfile, 'rb') as f: self._splitted_objs = pickle.load(f) f.close() break else: # generate new split information without overriding the old version = re.findall(r"v(\d+).", self._splitfile) if len(version) == 0: self._splitfile = self._splitfile[:-4] + '_v1.pkl' else: version = int(version[0]) self._splitfile = orig_splitfile[:-4] + f'_v{version + 1}.pkl' # actual splitting happens here splitting.split(data, self._splitfile, bio_density=bio_density, capacity=sample_num, tech_density=tech_density, density_splitting=density_mode, chunk_size=ctx_size, splitted_hcs=self._splitted_objs, redundancy=splitting_redundancy, label_remove=label_remove, split_jitter=split_jitter) with open(self._splitfile, 'rb') as f: self._splitted_objs = pickle.load(f) f.close() self._voxel_sizes = dict(sv=80, mi=100, syn_ssv=100, vc=100) if voxel_sizes is not None: self._voxel_sizes = voxel_sizes self._sample_num = sample_num self._transform = transform self._specific = specific self._data_type = data_type self._obj_feats = obj_feats self._label_mappings = label_mappings self._hybrid_mode = hybrid_mode self._label_remove = label_remove self._sampling = sampling self._padding = padding self._verbose = verbose self._split_on_demand = split_on_demand self._bio_density = bio_density self._tech_density = tech_density self._density_mode = density_mode self._chunk_size = ctx_size self._splitting_redundancy = splitting_redundancy self._split_jitter = split_jitter self._epoch_size = epoch_size self._workers = workers self._ssd_labels = ssd_labels self._ssd_exclude = ssd_exclude self._rebalance = rebalance self._exclude_borders = exclude_borders if ssd_exclude is None: self._ssd_exclude = [] self._ssd_include = ssd_include if self._ssd_labels is None and type( self._data) == SuperSegmentationDataset: raise ValueError( "ssd_labels must be specified when working with a SuperSegmentationDataset!" ) self._obj_names = [] self._objs = [] self._chunk_list = [] self._parts = {} if type(data) == SuperSegmentationDataset: self._load_func = self.get_item_ssd elif self._specific: self._load_func = self.get_item_specific else: self._load_func = self.get_item # --- dataloader for experiments when using CMN predictions as ground truth --- if type(self._data) == SuperSegmentationDataset: for key in self._obj_feats: self._parts[key] = [ self._voxel_sizes[key], self._obj_feats[key] ] # If ssd dataset is given, multiple workers are used for splitting the ssvs of the given dataset. self._obj_names = Queue() self._chunk_list = Queue(maxsize=10000) if self._ssd_include is None: sizes = [sso.size for sso in self._data.ssvs] idcs = np.argsort(sizes) self._ssd_include = np.array(self._data.ssv_ids)[idcs[-200:]] for ssv in self._ssd_include: if ssv not in self._ssd_exclude: self._obj_names.put(ssv) self._splitters = [ Process(target=worker_split, args=(self._obj_names, self._chunk_list, self._data, self._chunk_size, self._chunk_size / self._splitting_redundancy, self._parts, self._ssd_labels, self._label_mappings, self._split_jitter)) for ix in range(workers) ] for splitter in self._splitters: splitter.start() # --- dataloader for experiments with cells saved as pickle files --- else: files = glob.glob(data + '*.pkl') for file in files: slashs = [pos for pos, char in enumerate(file) if char == '/'] name = file[slashs[-1] + 1:-4] self._obj_names.append(name) if not self._specific: # load entire dataset into memory obj = self._adapt_obj( objects.load_obj(self._data_type, file)) self._objs.append(obj) if not self._specific: if split_on_demand: # do not use split information from file but split cells on the fly for ix, obj in enumerate(tqdm(self._objs)): base_nodes = np.arange(len(obj.nodes)).reshape( -1, 1)[obj.node_labels != -1] base_nodes = np.random.choice(base_nodes, int(len(base_nodes) / 3), replace=True) chunks = context_splitting_kdt(obj, base_nodes, self._chunk_size) for chunk in chunks: self._chunk_list.append((ix, chunk)) else: # use split information from file for item in self._splitted_objs: if item in self._obj_names: for idx in range(len(self._splitted_objs[item])): self._chunk_list.append((item, idx)) if self._rebalance is not None: # rebalance occurence of chunks by using chunks which contain specific labels multiple times print("Rebalancing...") balance = {} for key in self._rebalance: balance[key] = 0 for ix in tqdm(range(len(self._chunk_list))): item = self._chunk_list[ix] obj = self._objs[self._obj_names.index(item[0])] for key in self._rebalance: if key in np.unique(obj.labels): for i in range(self._rebalance[key]): self._chunk_list.append(item) balance[key] += 1 print("Done with rebalancing!") print(balance) random.shuffle(self._chunk_list) self._curr_obj = None self._curr_name = None self._ix = 0 self._size = len(self._chunk_list) def __len__(self): if self._epoch_size is not None: size = self._epoch_size elif self._ssd_include is not None: size = len(self._ssd_include) elif self._specific: if self._curr_name is None: size = 0 else: size = len(self._splitted_objs[self._curr_name]) else: size = self._size return size def __getitem__(self, item: Union[int, Tuple[str, int]]): """ Returns either a chunk from a specific location and object or iterates the objects sequentially and returns the chunks in the order of the chunking information. If the sampled PointCloud contains no vertices, a PointCloud with `self._sample_num` vertices and labels is returned, where all numbers are set to 0. Args: item: With :attr:`specific` as False, this parameter is a simple integer indexing the training examples. With true it must be a tuple of the filename of the requested object and the index of the chunk within that object. E.g. if chunk 5 from object in pickle file object.pkl is requested, this would be ('object', 5). """ vert_num = None sample, ixs, source_node = self._load_func(item) if sample is None and self._specific: return None, None if self._verbose: vert_num = len(sample.vertices) if self._sampling: sample, ixs = clouds.sample_cloud(sample, self._sample_num, padding=self._padding) if self._exclude_borders != 0: max_label = sample.labels.max() sample.mark_borders(max_label + 1, self._chunk_size - self._exclude_borders, centroid=source_node) sample.encoding['border'] = max_label + 1 sample.no_pred.append('border') self._transform(sample) if len(sample.vertices) > 0: if self._verbose: return sample, ixs, vert_num elif self._specific: return sample, ixs else: return sample else: if self._verbose: return None, np.empty(0), 0 elif self._specific: return None, np.empty(0) else: return None def get_item_ssd(self, item): """ Loading method used when data is given in form of ssd dataset. Uses multiple workers for splitting of the ssvs. """ while self._chunk_list.empty(): if self._obj_names.empty(): np.random.shuffle(self._ssd_include) for ssv in self._ssd_include: if ssv not in self._ssd_exclude: self._obj_names.put(ssv) time.sleep(0.5) return self._chunk_list.get(), None, None def get_item_specific(self, item: Tuple[str, int]): """ Loading method used in specific mode, when given item specifies object and index of next chunk. """ # Get specific item (e.g. chunk 5 of object 1) if isinstance(item, tuple): splitted_obj = self._splitted_objs[item[0]] # In specific mode, the files get loaded sequentially if self._curr_name != item[0]: self._curr_obj = self._adapt_obj( objects.load_obj(self._data_type, self._data + item[0] + '.pkl')) self._curr_name = item[0] # Return None if requested chunk doesn't exist if item[1] >= len(splitted_obj) or abs( item[1]) > len(splitted_obj): return None, None, None # splitted_obj: (source_node, node_arr) local_bfs = splitted_obj[item[1]][1] sample, idcs = objects.extract_cloud_subset( self._curr_obj, local_bfs) return sample, idcs, splitted_obj[item[1]][0] else: raise ValueError( 'In validation mode, items can only be requested with a tuple of object name and ' 'chunk index within that cloud.') def get_item(self, item: int): """ Loading method for general case, when item only contains the index of the next chunk. """ if self._split_on_demand: if item == self._size - 1: self._chunk_list = [] for ix, obj in enumerate(self._objs): jitter = random.randint(-self._split_jitter, self._split_jitter) base_nodes = np.arange(len(obj.nodes)).reshape( -1, 1)[obj.node_labels != -1] base_nodes = np.random.choice(base_nodes, int(len(base_nodes) / 3), replace=True) chunks = context_splitting_kdt(obj, base_nodes, self._chunk_size + jitter) for chunk in chunks: self._chunk_list.append((ix, chunk)) ix, chunk = self._chunk_list[item] obj = self._objs[ix] sample, idcs = objects.extract_cloud_subset(obj, chunk) return sample, idcs, self._chunk_list[item][0] next_item = self._chunk_list[item] curr_obj_chunks = self._splitted_objs[next_item[0]] self._curr_obj = self._objs[self._obj_names.index(next_item[0])] next_ix = next_item[1] % len(curr_obj_chunks) local_bfs = curr_obj_chunks[next_ix][1] sample, idcs = objects.extract_cloud_subset(self._curr_obj, local_bfs) return sample, idcs, curr_obj_chunks[next_ix][0] def terminate(self): if type(self._data) == SuperSegmentationDataset: for splitter in self._splitters: splitter.terminate() splitter.join() splitter.close() @property def obj_names(self): return self._obj_names @property def sample_num(self): return self._sample_num @property def splitfile(self): return self._splitfile def switch_mode(self): """ Switch specific mode on and off. """ self._specific = not self._specific def get_obj_length(self, name: str): """ Returns the number of chunks for a specific object. Args: name: Filename of the requested object. If the file is object.pkl this would be 'object'. """ return len(self._splitted_objs[name]) def get_obj_info(self, name: str): if not self._specific: # get objects which are already in cache ix = self._obj_names.index(name) obj = self._objs[ix] else: # load objects individually obj = self._adapt_obj( objects.load_obj(self._data_type, self._data + name + '.pkl')) attr_dict = { 'vertex_num': len(obj.vertices), 'node_num': len(obj.nodes), 'types': list(np.unique(obj.types, return_counts=True)), 'labels': list(np.unique(obj.labels, return_counts=True)), 'length': self.get_obj_length(name), 'node_labels': list(np.unique(obj.node_labels, return_counts=True)) } return attr_dict def get_set_info(self): """ Returns a dict with information about the specified dataset. """ total_attr_dict = { 'vertex_num': 0, 'node_num': 0, 'types': [np.array([]), np.array([])], 'labels': [np.array([]), np.array([])], 'node_labels': [np.array([]), np.array([])], 'length': 0 } for name in self.obj_names: attr_dict = self.get_obj_info(name) total_attr_dict[name] = attr_dict total_attr_dict['vertex_num'] += attr_dict['vertex_num'] total_attr_dict['node_num'] += attr_dict['node_num'] total_attr_dict['length'] += attr_dict['length'] for key in ['labels', 'types', 'node_labels']: labels = attr_dict[key] total_labels = total_attr_dict[key] for source_ix, label in enumerate(labels[0]): if label in total_labels[0]: # add label counts of current obj to total target_ix = int(np.argwhere(total_labels[0] == label)) total_labels[1][target_ix] += labels[1][source_ix] else: # append label and label counts total_labels[0] = np.append(total_labels[0], int(label)) total_labels[1] = np.append(total_labels[1], int(labels[1][source_ix])) assert total_attr_dict['labels'][1].sum( ) == total_attr_dict['vertex_num'] return total_attr_dict def _adapt_obj( self, obj: Union[CloudEnsemble, HybridCloud] ) -> Union[CloudEnsemble, HybridCloud]: """ Transforms the given cell according to the parameters of the dataloader, e.g. adds requested features to the cells / removes certain parts from the cells or maps labels """ # transform to HybridCloud if no cell organelles are needed: if self._hybrid_mode and isinstance(obj, CloudEnsemble): obj = obj.hc # add features to the cell if self._obj_feats is not None: if isinstance(obj, CloudEnsemble): for name in self._obj_feats: feat_line = self._obj_feats[name] if name == 'sv': name = 'hc' subcloud = obj.get_cloud(name) if subcloud is not None: if isinstance(feat_line, dict): # include myelin information which is saved in the `types` array of the cloud subcloud.types2feat(feat_line) else: if type(feat_line) == int: feats = np.ones( (len(subcloud.vertices), 1)) * feat_line if len(feats) != 0: feats = label_binarize( feats, classes=np.arange(len( self._obj_feats))) else: feats = np.ones( (len(subcloud.vertices), len(feat_line))) feats[:] = feat_line subcloud.set_features(feats) elif self._hybrid_mode: feats = np.ones(len(obj.vertices)).reshape(-1, 1) feats[:] = self._obj_feats['hc'] obj.set_features(feats) # remove nodes of given labels if self._label_remove is not None: obj.remove_nodes(self._label_remove) # change labels if self._label_mappings is not None: obj.map_labels(self._label_mappings) return obj