def render(self): SawyerEnv.render(self)
@property def action_space(self): return FlatGoalEnv.action_space(self) def render(self): SawyerEnv.render(self) def log_diagnostics(self, paths, prefix=''): reach_rew = [path["env_infos"]['reachRew'] for path in paths] pick_rew = [path["env_infos"]['pickRew'][-1] for path in paths] place_rew = [path["env_infos"]['placeRew'] for path in paths] reach_dist = [path["env_infos"]['reachDist'] for path in paths] placing_dist = [path["env_infos"]['placingDist'] for path in paths] logger.logkv(prefix + 'AverageReachReward', np.mean(reach_rew)) logger.logkv(prefix + 'AveragePickReward', np.mean(pick_rew)) logger.logkv(prefix + 'AveragePlaceReward', np.mean(place_rew)) logger.logkv(prefix + 'AverageReachDistance', np.mean(reach_dist)) logger.logkv(prefix + 'AveragePlaceDistance', np.mean(placing_dist)) if __name__ == "__main__": env = SawyerPickAndPlaceEnv() while True: task = env.sample_tasks(1)[0] env.set_task(task) env.reset() for _ in range(500): SawyerEnv.render(env) _, reward, _, _ = env.step( env.action_space.sample()) # take a random action