def main(_): global TOTAL, ID_LENGTH if not os.path.exists(TRAIN_FILE): music.main() # Import data with open(TRAIN_FILE, 'r') as file: data = json.load(file) data_train = data["train"] data_test = data["test"] iddict = data["keys"] # Length of input TOTAL = len(data_train[0][0]) # Length of output ID_LENGTH = len(data_train[0][1]) # Create the model x = tf.placeholder(tf.float32, [None, TOTAL]) # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, ID_LENGTH]) # Build the graph for the deep net y_conv = deepnn(x) with tf.name_scope('loss'): cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv) cross_entropy = tf.reduce_mean(cross_entropy) with tf.name_scope('adam_optimizer'): train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) with tf.name_scope('accuracy'): correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) correct_prediction = tf.cast(correct_prediction, tf.float32) accuracy = tf.reduce_mean(correct_prediction) graph_location = tempfile.mkdtemp() print('Saving graph to: %s' % graph_location) train_writer = tf.summary.FileWriter(graph_location) train_writer.add_graph(tf.get_default_graph()) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(10000): inds = npr.randint(len(data_train), size=10) batch = [data_train[i] for i in inds] left = [entry[0] for entry in batch] right = [entry[1] for entry in batch] if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={x: left, y_: right}) print('step %d, training accuracy %g' % (i, train_accuracy)) train_step.run(feed_dict={x: left, y_: right}) left = [entry[0] for entry in data_test] right = [entry[1] for entry in data_test] print('test accuracy: ', accuracy.eval(feed_dict={x: left, y_: right}))
def music_recs(): music.main()
def ya_music(user_id, body, counter): track = music.main(body) if track == "YmdlWrongUrlError": write(user_id, "Неправильный url.") else: file_send(user_id, track, counter, music=True)
def exit(): with open('working.pcl', 'wb') as f: pickle.dump(finalList, f) f.close() root.destroy() main()
def doMenuItem(current): #menuList = ["About", "Snake", "Flappy Bird", "Simon", "Breakout", "Music Box", "2048", "LED Fun", "Test All", Files] if current == 0: about() elif current == 1: import snake snake.main(gg) del sys.modules['snake'] gc.collect() drawMenu(current) elif current == 2: import flappy flappy.main(gg) del sys.modules['flappy'] gc.collect() drawMenu(2) elif current == 3: import simon simon.main(gg) del sys.modules['simon'] gc.collect() drawMenu(3) elif current == 4: import AnimeBreakout AnimeBreakout.main(gg) del sys.modules['AnimeBreakout'] gc.collect() drawMenu(current) elif current == 5: import music music.main(gg) del sys.modules['music'] gc.collect() drawMenu(current) elif current == 6: import g2048 g2048.main(gg) del sys.modules['g2048'] gc.collect() drawMenu(current) elif current == 7: testLEDs() elif current == 8: testAll() elif current == 9: showFiles() elif current == 10: showOS() elif current == 11: import machine machine.reset() elif current == 12: utime.sleep_ms(200) if gg.playSound: menuList[12] = "Sound: Off" gg.playSound = False else: menuList[12] = "Sound: On" gg.playSound = True gg.beep() utime.sleep_ms(25) gg.lowBeep() utime.sleep_ms(25) gg.beep() utime.sleep_ms(200) drawMenu(current) gc.collect()