mb_size = 100 # mini-batch_size Z_dim = 100 label_dim = 18 X_dim = 64 y_dim = 1 cnt = 0 num = '0' out_dir = './cifar100_result/basic_{}_{}/'.format(datetime.now(),num) out_dir.replace(" ","_") if not os.path.exists(out_dir): os.makedirs(out_dir) shutil.copyfile(sys.argv[0], out_dir + '/shuideguo.py') sys.stdout = mutil.Logger(out_dir) in_channel=4 d_num = 3 # G = model.G_Net_conv_64(ngpu,main_gpu = gpu, in_channel = Z_dim+label_dim,out_channel=3).cuda() G_model = torch.load("/home/bike/2027/generative-models/GAN/conditional_gan/cifar100_result/basic_2017-05-15 19:57:38.738341_0/G_10000.model") D_model = torch.load("/home/bike/2027/generative-models/GAN/conditional_gan/cifar100_result/basic_2017-05-15 19:57:38.738341_0/D_10000.model") # D = model.D_Net_conv_64(ngpu,main_gpu=gpu,inchannel=3).cuda() D_hidden_layer = 128 conv_hidden_num = 128 repeat_num = int(np.log2(X_dim)) - 2 D = DiscriminatorCNN(input_channel=3, z_num= D_hidden_layer, repeat_num=repeat_num, hidden_num=conv_hidden_num, num_gpu=gpu_ids) G = GeneratorCNN(label_dim+Z_dim, D.conv2_input_dim, output_num=3, repeat_num=repeat_num, hidden_num=conv_hidden_num, num_gpu=gpu_ids)
from datetime import datetime mpl.use('Agg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import os from torch.autograd import Variable from tensorflow.examples.tutorials.mnist import input_data import torch.nn as nn import torch.nn.functional as F import shutil, sys import mutil import model sys.stdout = mutil.Logger() gpu = 1 torch.cuda.set_device(gpu) mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True) mb_size = 64 # mini-batch_size Z_dim = 100 X_dim = mnist.train.images.shape[1] y_dim = mnist.train.labels.shape[1] h_dim = 128 cnt = 0 num = '0' out_dir = 'out_fc_{}_{}/'.format(datetime.now(), num) if not os.path.exists(out_dir): os.makedirs(out_dir)