TODO """ import numpy as np """ """ import mvpa from mvpa.base import cfg from mvpa.misc.data_generators import * from mvpa.clfs.knn import kNN from mvpa.misc.plot import * mvpa.seed(0) # to reproduce the plot dataset_kwargs = dict(nfeatures=2, nchunks=10, snr=2, nlabels=4, means=[[0, 1], [1, 0], [1, 1], [0, 0]]) dataset_train = normal_feature_dataset(**dataset_kwargs) dataset_plot = normal_feature_dataset(**dataset_kwargs) # make a new figure pl.figure(figsize=(9, 9)) for i, k in enumerate((1, 3, 9, 20)): knn = kNN(k)
""" import numpy as np """ """ import mvpa from mvpa.base import cfg from mvpa.misc.data_generators import * from mvpa.clfs.knn import kNN from mvpa.misc.plot import * mvpa.seed(0) # to reproduce the plot dataset_kwargs = dict(nfeatures=2, nchunks=10, snr=2, nlabels=4, means=[[0, 1], [1, 0], [1, 1], [0, 0]]) dataset_train = normal_feature_dataset(**dataset_kwargs) dataset_plot = normal_feature_dataset(**dataset_kwargs) # make a new figure pl.figure(figsize=(9, 9)) for i, k in enumerate((1, 3, 9, 20)): knn = kNN(k) print "Processing kNN(%i) problem..." % k pl.subplot(2, 2, i + 1)
def newfunc(*arg, **kwargs): mvpa.seed(mvpa._random_seed) return func(*arg, **kwargs)