def test_split_clf_on_chainpartitioner(self): # pretty much a smoke test for #156 ds = datasets['uni2small'] part = ChainNode([ NFoldPartitioner(cvtype=1), Balancer(attr='targets', count=2, limit='partitions', apply_selection=True) ]) partitions = list(part.generate(ds)) sclf = SplitClassifier(sample_clf_lin, part, enable_ca=['stats', 'splits']) sclf.train(ds) pred = sclf.predict(ds) assert_equal(len(pred), len(ds)) # rudimentary check assert_equal(len(sclf.ca.splits), len(partitions)) assert_equal(len(sclf.clfs), len(partitions)) # now let's do sensitivity analyzer just in case sclf.untrain() sensana = sclf.get_sensitivity_analyzer() sens = sensana(ds) # basic check that sensitivities varied across splits from mvpa2.mappers.fx import FxMapper sens_stds = FxMapper('samples', np.std, uattrs=['targets'])(sens) assert_true(np.any(sens_stds != 0))
def test_split_classifier(self): ds = self.data_bin_1 clf = SplitClassifier( clf=SameSignClassifier(), enable_ca=['stats', 'training_stats', 'feature_ids']) clf.train(ds) # train the beast error = clf.ca.stats.error tr_error = clf.ca.training_stats.error clf2 = clf.clone() cv = CrossValidation(clf2, NFoldPartitioner(), postproc=mean_sample(), enable_ca=['stats', 'training_stats']) cverror = cv(ds) cverror = cverror.samples.squeeze() tr_cverror = cv.ca.training_stats.error self.assertEqual( error, cverror, msg="We should get the same error using split classifier as" " using CrossValidation. Got %s and %s" % (error, cverror)) self.assertEqual( tr_error, tr_cverror, msg="We should get the same training error using split classifier as" " using CrossValidation. Got %s and %s" % (tr_error, tr_cverror)) self.assertEqual(clf.ca.stats.percent_correct, 100, msg="Dummy clf should train perfectly") # CV and SplitClassifier should get the same confusion matrices assert_array_equal(clf.ca.stats.matrix, cv.ca.stats.matrix) self.assertEqual(len(clf.ca.stats.sets), len(ds.UC), msg="Should have 1 confusion per each split") self.assertEqual( len(clf.clfs), len(ds.UC), msg="Should have number of classifiers equal # of epochs") self.assertEqual(clf.predict(ds.samples), list(ds.targets), msg="Should classify correctly") # feature_ids must be list of lists, and since it is not # feature-selecting classifier used - we expect all features # to be utilized # NOT ANYMORE -- for BoostedClassifier we have now union of all # used features across slave classifiers. That makes # semantics clear. If you need to get deeper -- use upcoming # harvesting facility ;-) # self.assertEqual(len(clf.feature_ids), len(ds.uniquechunks)) # self.assertTrue(np.array([len(ids)==ds.nfeatures # for ids in clf.feature_ids]).all()) # Just check if we get it at all ;-) summary = clf.summary()
def test_split_classifier(self): ds = self.data_bin_1 clf = SplitClassifier(clf=SameSignClassifier(), enable_ca=['stats', 'training_stats', 'feature_ids']) clf.train(ds) # train the beast error = clf.ca.stats.error tr_error = clf.ca.training_stats.error clf2 = clf.clone() cv = CrossValidation(clf2, NFoldPartitioner(), postproc=mean_sample(), enable_ca=['stats', 'training_stats']) cverror = cv(ds) cverror = cverror.samples.squeeze() tr_cverror = cv.ca.training_stats.error self.assertEqual(error, cverror, msg="We should get the same error using split classifier as" " using CrossValidation. Got %s and %s" % (error, cverror)) self.assertEqual(tr_error, tr_cverror, msg="We should get the same training error using split classifier as" " using CrossValidation. Got %s and %s" % (tr_error, tr_cverror)) self.assertEqual(clf.ca.stats.percent_correct, 100, msg="Dummy clf should train perfectly") # CV and SplitClassifier should get the same confusion matrices assert_array_equal(clf.ca.stats.matrix, cv.ca.stats.matrix) self.assertEqual(len(clf.ca.stats.sets), len(ds.UC), msg="Should have 1 confusion per each split") self.assertEqual(len(clf.clfs), len(ds.UC), msg="Should have number of classifiers equal # of epochs") self.assertEqual(clf.predict(ds.samples), list(ds.targets), msg="Should classify correctly") # feature_ids must be list of lists, and since it is not # feature-selecting classifier used - we expect all features # to be utilized # NOT ANYMORE -- for BoostedClassifier we have now union of all # used features across slave classifiers. That makes # semantics clear. If you need to get deeper -- use upcoming # harvesting facility ;-) # self.assertEqual(len(clf.feature_ids), len(ds.uniquechunks)) # self.assertTrue(np.array([len(ids)==ds.nfeatures # for ids in clf.feature_ids]).all()) # Just check if we get it at all ;-) summary = clf.summary()
def test_split_clf_on_chainpartitioner(self): # pretty much a smoke test for #156 ds = datasets['uni2small'] part = ChainNode([NFoldPartitioner(cvtype=1), Balancer(attr='targets', count=2, limit='partitions', apply_selection=True)]) partitions = list(part.generate(ds)) sclf = SplitClassifier(sample_clf_lin, part, enable_ca=['stats', 'splits']) sclf.train(ds) pred = sclf.predict(ds) assert_equal(len(pred), len(ds)) # rudimentary check assert_equal(len(sclf.ca.splits), len(partitions)) assert_equal(len(sclf.clfs), len(partitions)) # now let's do sensitivity analyzer just in case sclf.untrain() sensana = sclf.get_sensitivity_analyzer() sens = sensana(ds) # basic check that sensitivities varied across splits from mvpa2.mappers.fx import FxMapper sens_stds = FxMapper('samples', np.std, uattrs=['targets'])(sens) assert_true(np.any(sens_stds != 0))
def test_regressions(self, regr): """Simple tests on regressions """ if not externals.exists('scipy'): raise SkipTest else: from mvpa2.misc.errorfx import corr_error ds = datasets['chirp_linear'] # we want numeric labels to maintain the previous behavior, especially # since we deal with regressions here ds.sa.targets = AttributeMap().to_numeric(ds.targets) cve = CrossValidation(regr, NFoldPartitioner(), postproc=mean_sample(), errorfx=corr_error, enable_ca=['training_stats', 'stats']) # check the default #self.assertTrue(cve.transerror.errorfx is corr_error) corr = np.asscalar(cve(ds).samples) # Our CorrErrorFx should never return NaN self.assertTrue(not np.isnan(corr)) self.assertTrue(corr == cve.ca.stats.stats['CCe']) splitregr = SplitClassifier( regr, partitioner=OddEvenPartitioner(), enable_ca=['training_stats', 'stats']) splitregr.train(ds) split_corr = splitregr.ca.stats.stats['CCe'] split_corr_tr = splitregr.ca.training_stats.stats['CCe'] for confusion, error in ( (cve.ca.stats, corr), (splitregr.ca.stats, split_corr), (splitregr.ca.training_stats, split_corr_tr), ): #TODO: test confusion statistics # Part of it for now -- CCe for conf in confusion.summaries: stats = conf.stats if cfg.getboolean('tests', 'labile', default='yes'): self.assertTrue(stats['CCe'] < 0.5) self.assertEqual(stats['CCe'], stats['Summary CCe']) s0 = confusion.as_string(short=True) s1 = confusion.as_string(short=False) for s in [s0, s1]: self.assertTrue(len(s) > 10, msg="We should get some string representation " "of regression summary. Got %s" % s) if cfg.getboolean('tests', 'labile', default='yes'): self.assertTrue(error < 0.2, msg="Regressions should perform well on a simple " "dataset. Got correlation error of %s " % error) # Test access to summary statistics # YOH: lets start making testing more reliable. # p-value for such accident to have is verrrry tiny, # so if regression works -- it better has at least 0.5 ;) # otherwise fix it! ;) # YOH: not now -- issues with libsvr in SG and linear kernel if cfg.getboolean('tests', 'labile', default='yes'): self.assertTrue(confusion.stats['CCe'] < 0.5) # just to check if it works fine split_predictions = splitregr.predict(ds.samples)