def test_ridge_reg_state(self): data = datasets['dumb'] clf = RidgeReg() clf.train(data) clf.ca.enable('predictions') p = clf.predict(data.samples) self.assertTrue((p == clf.ca.predictions).all())
def test_ridge_reg(self): # not the perfect dataset with which to test, but # it will do for now. data = datasets['dumb'] clf = RidgeReg() clf.train(data) # prediction has to be almost perfect # test with a correlation pre = clf.predict(data.samples) cor = pearsonr(pre,data.targets) self.assertTrue(cor[0] > .8)
def test_ridge_reg(self): # not the perfect dataset with which to test, but # it will do for now. data = datasets['dumb'] clf = RidgeReg() clf.train(data) # prediction has to be almost perfect # test with a correlation pre = clf.predict(data.samples) cor = pearsonr(pre, data.targets) self.assertTrue(cor[0] > .8)