示例#1
0
    def test_ridge_reg_state(self):
        data = datasets['dumb']

        clf = RidgeReg()

        clf.train(data)

        clf.ca.enable('predictions')

        p = clf.predict(data.samples)

        self.assertTrue((p == clf.ca.predictions).all())
示例#2
0
    def test_ridge_reg_state(self):
        data = datasets['dumb']

        clf = RidgeReg()

        clf.train(data)

        clf.ca.enable('predictions')

        p = clf.predict(data.samples)

        self.assertTrue((p == clf.ca.predictions).all())
示例#3
0
    def test_ridge_reg(self):
        # not the perfect dataset with which to test, but
        # it will do for now.
        data = datasets['dumb']

        clf = RidgeReg()

        clf.train(data)

        # prediction has to be almost perfect
        # test with a correlation
        pre = clf.predict(data.samples)
        cor = pearsonr(pre,data.targets)
        self.assertTrue(cor[0] > .8)
示例#4
0
    def test_ridge_reg(self):
        # not the perfect dataset with which to test, but
        # it will do for now.
        data = datasets['dumb']

        clf = RidgeReg()

        clf.train(data)

        # prediction has to be almost perfect
        # test with a correlation
        pre = clf.predict(data.samples)
        cor = pearsonr(pre, data.targets)
        self.assertTrue(cor[0] > .8)