}, 'initial_lr': 0.1, 'optimizer': 'SGD' } solver = MXSolver( batch_size=64, devices=(args.gpu_index, ), epochs=30, initializer=PReLUInitializer(), optimizer_settings=optimizer_settings, symbol=network, verbose=True, ) from data_utilities import load_mnist data = load_mnist(path='stretched_canvas_mnist', scale=1, shape=(1, 56, 56))[:2] data += load_mnist(path='stretched_mnist', scale=1, shape=(1, 56, 56))[2:] info = solver.train(data) postfix = '-' + args.postfix if args.postfix else '' identifier = 'residual-network-on-stretched-mnist-%d%s' % ( args.n_residual_layers, postfix) import cPickle as pickle pickle.dump(info, open('info/%s' % identifier, 'wb')) parameters = solver.export_parameters() pickle.dump(parameters, open('parameters/%s' % identifier, 'wb'))
'momentum': 0.9 }, 'initial_lr': lr, 'lr_scheduler': AtIterationScheduler(lr, lr_table), 'optimizer': 'SGD', 'weight_decay': 0.0001, } solver = MXSolver( batch_size=BATCH_SIZE, devices=(0, 1, 2, 3), epochs=int(sys.argv[1]), initializer=PReLUInitializer(), optimizer_settings=optimizer_settings, symbol=network, verbose=True, ) info = solver.train(data) identifier = 'triple-state-transitory-residual-network' pickle.dump(info, open('info/%s' % identifier, 'wb')) parameters, states = solver.export_parameters() parameters = { key: value for key, value in parameters.items() if 'transition' in key } states = {key: value for key, value in states.items() if 'transition' in key} pickle.dump((parameters, states), open('parameters/%s' % identifier, 'wb'))