示例#1
0
    def test_meanfield_save_and_load(self):
        from mxfusion.inference.meanfield import create_Gaussian_meanfield
        from mxfusion.inference import StochasticVariationalInference
        from mxfusion.inference.grad_based_inference import GradBasedInference
        from mxfusion.inference import BatchInferenceLoop

        x = np.random.rand(1000, 1)
        y = np.random.rand(1000, 1)
        x_nd, y_nd = mx.nd.array(y), mx.nd.array(x)

        net = self.make_net()
        net(x_nd)

        m = self.make_model(net)

        observed = [m.y, m.x]
        q = create_Gaussian_meanfield(model=m, observed=observed)
        alg = StochasticVariationalInference(num_samples=3, model=m, observed=observed, posterior=q)
        infr = GradBasedInference(inference_algorithm=alg, grad_loop=BatchInferenceLoop())
        infr.initialize(y=y_nd, x=x_nd)
        infr.run(max_iter=1, learning_rate=1e-2, y=y_nd, x=x_nd)

        infr.save(prefix=self.PREFIX)

        net2 = self.make_net()
        net2(x_nd)

        m2 = self.make_model(net2)

        observed2 = [m2.y, m2.x]
        q2 = create_Gaussian_meanfield(model=m2, observed=observed2)
        alg2 = StochasticVariationalInference(num_samples=3, model=m2, observed=observed2, posterior=q2)
        infr2 = GradBasedInference(inference_algorithm=alg2, grad_loop=BatchInferenceLoop())
        infr2.initialize(y=y_nd, x=x_nd)

        # Load previous parameters
        infr2.load(primary_model_file=self.PREFIX+'_graph_0.json',
                   secondary_graph_files=[self.PREFIX+'_graph_1.json'],
                   parameters_file=self.PREFIX+'_params.json',
                   inference_configuration_file=self.PREFIX+'_configuration.json',
                   mxnet_constants_file=self.PREFIX+'_mxnet_constants.json',
                   variable_constants_file=self.PREFIX+'_variable_constants.json')

        for original_uuid, original_param in infr.params.param_dict.items():
            original_data = original_param.data().asnumpy()
            reloaded_data = infr2.params.param_dict[infr2._uuid_map[original_uuid]].data().asnumpy()
            assert np.all(np.isclose(original_data, reloaded_data))

        for original_uuid, original_param in infr.params.constants.items():
            if isinstance(original_param, mx.ndarray.ndarray.NDArray):
                original_data = original_param.asnumpy()
                reloaded_data = infr2.params.constants[infr2._uuid_map[original_uuid]].asnumpy()
            else:
                original_data = original_param
                reloaded_data = infr2.params.constants[infr2._uuid_map[original_uuid]]

            assert np.all(np.isclose(original_data, reloaded_data))

        infr2.run(max_iter=1, learning_rate=1e-2, y=y_nd, x=x_nd)
        self.remove_saved_files(self.PREFIX)
示例#2
0
    def test_softplus_in_params(self):

        m = make_basic_model()

        x = np.random.rand(1000, 1)
        y = np.random.rand(1000, 1)
        x_nd, y_nd = mx.nd.array(y), mx.nd.array(x)

        from mxfusion.inference.meanfield import create_Gaussian_meanfield
        from mxfusion.inference import StochasticVariationalInference
        from mxfusion.inference.grad_based_inference import GradBasedInference
        from mxfusion.inference import BatchInferenceLoop
        observed = [m.x]
        q = create_Gaussian_meanfield(model=m, observed=observed)
        alg = StochasticVariationalInference(num_samples=3,
                                             model=m,
                                             observed=observed,
                                             posterior=q)
        infr = GradBasedInference(inference_algorithm=alg,
                                  grad_loop=BatchInferenceLoop())

        infr.initialize(x=x_nd)
        infr.run(max_iter=1, learning_rate=1e-2, x=x_nd)

        uuid_of_pos_var = m.v.uuid
        infr.params._params[uuid_of_pos_var]._data = mx.nd.array([-10])
        raw_value = infr.params._params[uuid_of_pos_var].data()
        transformed_value = infr.params[m.v]
        assert raw_value.asnumpy()[0] < 0 and transformed_value.asnumpy(
        )[0] > 0
示例#3
0
    def get_ppca_grad(self, x_train, inf_type, num_samples=100):
        import random
        dtype = get_default_dtype()
        random.seed(0)
        np.random.seed(0)
        mx.random.seed(0)
        m = self.make_ppca_model()
        q = self.make_ppca_post(m)
        observed = [m.x]
        alg = inf_type(num_samples=num_samples,
                       model=m,
                       posterior=q,
                       observed=observed)

        from mxfusion.inference.grad_based_inference import GradBasedInference
        from mxfusion.inference import BatchInferenceLoop

        infr = GradBasedInference(inference_algorithm=alg,
                                  grad_loop=BatchInferenceLoop())
        infr.initialize(x=mx.nd.array(x_train, dtype=dtype))
        infr.run(max_iter=1,
                 learning_rate=1e-2,
                 x=mx.nd.array(x_train, dtype=dtype),
                 verbose=False)
        return infr, q.post_mean
示例#4
0
    def test_meanfield_saving(self):
        dtype = get_default_dtype()
        x = np.random.rand(10, 1)
        y = np.random.rand(10, 1)
        x_nd, y_nd = mx.nd.array(y, dtype=dtype), mx.nd.array(x, dtype=dtype)

        self.net = self.make_net()
        self.net(x_nd)

        m = self.make_model(self.net)

        from mxfusion.inference.meanfield import create_Gaussian_meanfield
        from mxfusion.inference import StochasticVariationalInference
        from mxfusion.inference.grad_based_inference import GradBasedInference
        from mxfusion.inference import BatchInferenceLoop
        observed = [m.y, m.x]

        q = create_Gaussian_meanfield(model=m, observed=observed)
        alg = StochasticVariationalInference(num_samples=3,
                                             model=m,
                                             observed=observed,
                                             posterior=q)
        infr = GradBasedInference(inference_algorithm=alg,
                                  grad_loop=BatchInferenceLoop())
        infr.initialize(y=y_nd, x=x_nd)
        infr.run(max_iter=1, learning_rate=1e-2, y=y_nd, x=x_nd)

        infr.save(self.ZIPNAME)
        os.remove(self.ZIPNAME)
示例#5
0
 def test_one_map_example(self):
     """
     Tests that the creation of variables from a base gluon block works correctly.
     """
     from mxfusion.inference.map import MAP
     from mxfusion.inference.grad_based_inference import GradBasedInference
     from mxfusion.inference import BatchInferenceLoop
     observed = [self.m.y]
     alg = MAP(model=self.m, observed=observed)
     infr = GradBasedInference(inference_algorithm=alg,
                               grad_loop=BatchInferenceLoop())
     infr.run(y=mx.nd.array(np.random.rand(10)), max_iter=10)
示例#6
0
    def test_score_function_rb_batch(self):
        x = np.random.rand(1000, 1)
        y = np.random.rand(1000, 1)
        x_nd, y_nd = mx.nd.array(y), mx.nd.array(x)

        self.net = self.make_net()
        self.net(x_nd)

        m = self.make_bnn_model(self.net)

        from mxfusion.inference.meanfield import create_Gaussian_meanfield
        from mxfusion.inference.grad_based_inference import GradBasedInference
        from mxfusion.inference import BatchInferenceLoop
        observed = [m.y, m.x]
        q = create_Gaussian_meanfield(model=m, observed=observed)
        alg = ScoreFunctionRBInference(num_samples=3,
                                       model=m,
                                       observed=observed,
                                       posterior=q)
        infr = GradBasedInference(inference_algorithm=alg,
                                  grad_loop=BatchInferenceLoop())
        infr.initialize(y=y_nd, x=x_nd)
        infr.run(max_iter=1, learning_rate=1e-2, y=y_nd, x=x_nd)
示例#7
0
    def test_meanfield_save_and_load(self):
        dtype = get_default_dtype()
        from mxfusion.inference.meanfield import create_Gaussian_meanfield
        from mxfusion.inference import StochasticVariationalInference
        from mxfusion.inference.grad_based_inference import GradBasedInference
        from mxfusion.inference import BatchInferenceLoop

        x = np.random.rand(1000, 1)
        y = np.random.rand(1000, 1)
        x_nd, y_nd = mx.nd.array(y, dtype=dtype), mx.nd.array(x, dtype=dtype)

        net = self.make_net()
        net(x_nd)

        m = self.make_model(net)

        observed = [m.y, m.x]
        q = create_Gaussian_meanfield(model=m, observed=observed)
        alg = StochasticVariationalInference(num_samples=3,
                                             model=m,
                                             observed=observed,
                                             posterior=q)
        infr = GradBasedInference(inference_algorithm=alg,
                                  grad_loop=BatchInferenceLoop())
        infr.initialize(y=y_nd, x=x_nd)
        infr.run(max_iter=1, learning_rate=1e-2, y=y_nd, x=x_nd)

        infr.save(self.ZIPNAME)

        net2 = self.make_net()
        net2(x_nd)

        m2 = self.make_model(net2)

        observed2 = [m2.y, m2.x]
        q2 = create_Gaussian_meanfield(model=m2, observed=observed2)
        alg2 = StochasticVariationalInference(num_samples=3,
                                              model=m2,
                                              observed=observed2,
                                              posterior=q2)
        infr2 = GradBasedInference(inference_algorithm=alg2,
                                   grad_loop=BatchInferenceLoop())
        infr2.initialize(y=y_nd, x=x_nd)

        # Load previous parameters
        infr2.load(self.ZIPNAME)

        for original_uuid, original_param in infr.params.param_dict.items():
            original_data = original_param.data().asnumpy()
            reloaded_data = infr2.params.param_dict[
                infr2._uuid_map[original_uuid]].data().asnumpy()
            assert np.all(np.isclose(original_data, reloaded_data))

        for original_uuid, original_param in infr.params.constants.items():
            if isinstance(original_param, mx.ndarray.ndarray.NDArray):
                original_data = original_param.asnumpy()
                reloaded_data = infr2.params.constants[
                    infr2._uuid_map[original_uuid]].asnumpy()
            else:
                original_data = original_param
                reloaded_data = infr2.params.constants[
                    infr2._uuid_map[original_uuid]]

            assert np.all(np.isclose(original_data, reloaded_data))

        infr2.run(max_iter=1, learning_rate=1e-2, y=y_nd, x=x_nd)
        os.remove(self.ZIPNAME)