示例#1
0
 def gen_mxfusion_model(self,
                        dtype,
                        D,
                        Z,
                        noise_var,
                        lengthscale,
                        variance,
                        rand_gen=None):
     m = Model()
     m.N = Variable()
     m.X = Variable(shape=(m.N, 3))
     m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype))
     m.noise_var = Variable(transformation=PositiveTransformation(),
                            initial_value=mx.nd.array(noise_var,
                                                      dtype=dtype))
     kernel = RBF(input_dim=3,
                  ARD=True,
                  variance=mx.nd.array(variance, dtype=dtype),
                  lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                  dtype=dtype)
     m.Y = SVGPRegression.define_variable(X=m.X,
                                          kernel=kernel,
                                          noise_var=m.noise_var,
                                          inducing_inputs=m.Z,
                                          shape=(m.N, D),
                                          dtype=dtype)
     gp = m.Y.factor
     m.Y.factor.svgp_log_pdf.jitter = 1e-8
     return m, gp
示例#2
0
 def gen_mxfusion_model(self,
                        dtype,
                        D,
                        noise_var,
                        lengthscale,
                        variance,
                        rand_gen=None):
     m = Model()
     m.N = Variable()
     m.X = Variable(shape=(m.N, 3))
     m.noise_var = Variable(transformation=PositiveTransformation(),
                            initial_value=mx.nd.array(noise_var,
                                                      dtype=dtype))
     kernel = RBF(input_dim=3,
                  ARD=True,
                  variance=mx.nd.array(variance, dtype=dtype),
                  lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                  dtype=dtype)
     m.Y = GPRegression.define_variable(X=m.X,
                                        kernel=kernel,
                                        noise_var=m.noise_var,
                                        shape=(m.N, D),
                                        dtype=dtype,
                                        rand_gen=rand_gen)
     return m
示例#3
0
    def test_with_samples(self):
        from mxfusion.common import config
        config.DEFAULT_DTYPE = 'float64'
        dtype = 'float64'

        D, X, Y, noise_var, lengthscale, variance = self.gen_data()

        m = Model()
        m.N = Variable()
        m.X = Normal.define_variable(mean=0, variance=1, shape=(m.N, 3))
        m.noise_var = Variable(transformation=PositiveTransformation(),
                               initial_value=mx.nd.array(noise_var,
                                                         dtype=dtype))
        kernel = RBF(input_dim=3,
                     ARD=True,
                     variance=mx.nd.array(variance, dtype=dtype),
                     lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                     dtype=dtype)
        m.Y = GPRegression.define_variable(X=m.X,
                                           kernel=kernel,
                                           noise_var=m.noise_var,
                                           shape=(m.N, D))

        q = create_Gaussian_meanfield(model=m, observed=[m.Y])

        infr = GradBasedInference(
            inference_algorithm=StochasticVariationalInference(
                model=m, posterior=q, num_samples=10, observed=[m.Y]))
        infr.run(Y=mx.nd.array(Y, dtype='float64'),
                 max_iter=2,
                 learning_rate=0.1,
                 verbose=True)

        infr2 = Inference(
            ForwardSamplingAlgorithm(model=m, observed=[m.X], num_samples=5))
        infr2.run(X=mx.nd.array(X, dtype='float64'))

        infr_pred = TransferInference(ModulePredictionAlgorithm(
            model=m, observed=[m.X], target_variables=[m.Y]),
                                      infr_params=infr.params)
        xt = np.random.rand(13, 3)
        res = infr_pred.run(X=mx.nd.array(xt, dtype=dtype))[0]

        gp = m.Y.factor
        gp.attach_prediction_algorithms(
            targets=gp.output_names,
            conditionals=gp.input_names,
            algorithm=GPRegressionSamplingPrediction(gp._module_graph,
                                                     gp._extra_graphs[0],
                                                     [gp._module_graph.X]),
            alg_name='gp_predict')
        gp.gp_predict.diagonal_variance = False
        gp.gp_predict.jitter = 1e-6

        infr_pred2 = TransferInference(ModulePredictionAlgorithm(
            model=m, observed=[m.X], target_variables=[m.Y]),
                                       infr_params=infr.params)
        xt = np.random.rand(13, 3)
        res = infr_pred2.run(X=mx.nd.array(xt, dtype=dtype))[0]
示例#4
0
 def make_gpregr_model(self):
     m = Model()
     m.N = Variable()
     m.X = Variable(shape=(m.N, 3))
     m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array([1.]))
     kernel = RBF(input_dim=3, variance=mx.nd.array([1.]), lengthscale=mx.nd.array([1.]))
     m.Y = GPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, shape=(m.N, 2))
     return m
示例#5
0
    def test_prediction(self):
        np.random.seed(0)
        np.random.seed(0)
        X = np.random.rand(10, 3)
        Y = np.random.rand(10, 1)
        Z = np.random.rand(3, 3)
        qU_mean = np.random.rand(3, 1)
        qU_cov_W = np.random.rand(3, 3)
        qU_cov_diag = np.random.rand(3,)
        noise_var = np.random.rand(1)
        lengthscale = np.random.rand(3)
        variance = np.random.rand(1)
        qU_chol = np.linalg.cholesky(qU_cov_W.dot(qU_cov_W.T)+np.diag(qU_cov_diag))[None,:,:]
        Xt = np.random.rand(5, 3)

        m_gpy = GPy.core.SVGP(X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var))
        m_gpy.q_u_mean = qU_mean
        m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol)

        dtype = 'float64'
        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype))
        m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype))
        kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype)
        m.Y = SVGPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, inducing_inputs=m.Z, shape=(m.N, 1), dtype=dtype)
        gp = m.Y.factor

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)
        infr.initialize(X=X.shape, Y=Y.shape)
        infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype)

        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype))

        # noise_free, diagonal
        mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt)

        infr2 = TransferInference(ModulePredictionAlgorithm(m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64)
        res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0]
        mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0]

        assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf)
        assert np.allclose(var_gpy[:,0], var_mf), (var_gpy[:,0], var_mf)

        # noisy, diagonal
        mu_gpy, var_gpy = m_gpy.predict(Xt)

        infr2 = TransferInference(ModulePredictionAlgorithm(m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64)
        infr2.inference_algorithm.model.Y.factor.svgp_predict.noise_free = False
        res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0]
        mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0]

        assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf)
        assert np.allclose(var_gpy[:,0], var_mf), (var_gpy[:,0], var_mf)
示例#6
0
    def test_sampling_prediction(self):
        np.random.seed(0)
        X = np.random.rand(10, 3)
        Xt = np.random.rand(20, 3)
        Y = np.random.rand(10, 1)
        noise_var = np.random.rand(1)
        lengthscale = np.random.rand(3)
        variance = np.random.rand(1)

        m_gpy = GPy.models.GPRegression(X=X,
                                        Y=Y,
                                        kernel=GPy.kern.RBF(
                                            3,
                                            ARD=True,
                                            lengthscale=lengthscale,
                                            variance=variance),
                                        noise_var=noise_var)

        dtype = 'float64'
        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.noise_var = Variable(transformation=PositiveTransformation(),
                               initial_value=mx.nd.array(noise_var,
                                                         dtype=dtype))
        kernel = RBF(input_dim=3,
                     ARD=True,
                     variance=mx.nd.array(variance, dtype=dtype),
                     lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                     dtype=dtype)
        m.Y = GPRegression.define_variable(X=m.X,
                                           kernel=kernel,
                                           noise_var=m.noise_var,
                                           shape=(m.N, 1),
                                           dtype=dtype)

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)

        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype),
                           Y=mx.nd.array(Y, dtype=dtype))

        infr_pred = TransferInference(ModulePredictionAlgorithm(
            model=m, observed=[m.X], target_variables=[m.Y], num_samples=5),
                                      infr_params=infr.params)
        gp = m.Y.factor
        gp.attach_prediction_algorithms(
            targets=gp.output_names,
            conditionals=gp.input_names,
            algorithm=GPRegressionSamplingPrediction(gp._module_graph,
                                                     gp._extra_graphs[0],
                                                     [gp._module_graph.X]),
            alg_name='gp_predict')
        gp.gp_predict.diagonal_variance = False
        gp.gp_predict.jitter = 1e-6

        y_samples = infr_pred.run(X=mx.nd.array(Xt, dtype=dtype))[0].asnumpy()
示例#7
0
    def test_module_clone(self):
        D, X, Y, Z, noise_var, lengthscale, variance = self.gen_data()
        dtype = 'float64'

        m = Model()
        m.N = Variable()
        kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype)
        m.Y = SparseGPRegression.define_variable(X=mx.nd.zeros((2, 3)), kernel=kernel, noise_var=mx.nd.ones((1,)), dtype=dtype)
        m.clone()
示例#8
0
    def test_clone_gp(self, dtype, X, X_isSamples, rbf_lengthscale,
                      rbf_lengthscale_isSamples, rbf_variance,
                      rbf_variance_isSamples, rv, rv_isSamples, num_samples):
        X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
        rbf_lengthscale_mx = prepare_mxnet_array(rbf_lengthscale,
                                                 rbf_lengthscale_isSamples,
                                                 dtype)
        rbf_variance_mx = prepare_mxnet_array(rbf_variance,
                                              rbf_variance_isSamples, dtype)
        rv_mx = prepare_mxnet_array(rv, rv_isSamples, dtype)
        rv_shape = rv.shape[1:] if rv_isSamples else rv.shape

        rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)

        m = Model()
        m.X_var = Variable(shape=(5, 2))
        m.Y = GaussianProcess.define_variable(X=m.X_var,
                                              kernel=rbf,
                                              shape=rv_shape,
                                              dtype=dtype)

        gp = m.clone().Y.factor

        variables = {
            gp.X.uuid: X_mx,
            gp.rbf_lengthscale.uuid: rbf_lengthscale_mx,
            gp.rbf_variance.uuid: rbf_variance_mx,
            gp.random_variable.uuid: rv_mx
        }
        log_pdf_rt = gp.log_pdf(F=mx.nd, variables=variables).asnumpy()

        log_pdf_np = []
        for i in range(num_samples):
            X_i = X[i] if X_isSamples else X
            lengthscale_i = rbf_lengthscale[
                i] if rbf_lengthscale_isSamples else rbf_lengthscale
            variance_i = rbf_variance[
                i] if rbf_variance_isSamples else rbf_variance
            rv_i = rv[i] if rv_isSamples else rv
            rbf_np = GPy.kern.RBF(input_dim=2, ARD=True)
            rbf_np.lengthscale = lengthscale_i
            rbf_np.variance = variance_i
            K_np = rbf_np.K(X_i)
            log_pdf_np.append(
                multivariate_normal.logpdf(rv_i[:, 0], mean=None, cov=K_np))
        log_pdf_np = np.array(log_pdf_np)
        isSamples_any = any([
            X_isSamples, rbf_lengthscale_isSamples, rbf_variance_isSamples,
            rv_isSamples
        ])
        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert array_has_samples(mx.nd, log_pdf_rt) == isSamples_any
        if isSamples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples
        assert np.allclose(log_pdf_np, log_pdf_rt)
示例#9
0
    def test_sampling_prediction(self):
        np.random.seed(0)
        np.random.seed(0)
        X = np.random.rand(10, 3)
        Y = np.random.rand(10, 1)
        Z = np.random.rand(3, 3)
        qU_mean = np.random.rand(3, 1)
        qU_cov_W = np.random.rand(3, 3)
        qU_cov_diag = np.random.rand(3,)
        noise_var = np.random.rand(1)
        lengthscale = np.random.rand(3)
        variance = np.random.rand(1)
        qU_chol = np.linalg.cholesky(qU_cov_W.dot(qU_cov_W.T)+np.diag(qU_cov_diag))[None,:,:]
        Xt = np.random.rand(5, 3)

        m_gpy = GPy.core.SVGP(X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var))
        m_gpy.q_u_mean = qU_mean
        m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol)

        dtype = 'float64'
        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype))
        m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype))
        kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype)
        m.Y = SVGPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, inducing_inputs=m.Z, shape=(m.N, 1), dtype=dtype)
        gp = m.Y.factor

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)
        infr.initialize(X=X.shape, Y=Y.shape)
        infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype)

        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype))

        # noise_free, diagonal
        infr_pred = TransferInference(ModulePredictionAlgorithm(model=m, observed=[m.X], target_variables=[m.Y], num_samples=5),
                                      infr_params=infr.params)
        gp = m.Y.factor
        gp.attach_prediction_algorithms(
            targets=gp.output_names, conditionals=gp.input_names,
            algorithm=SVGPRegressionSamplingPrediction(
                gp._module_graph, gp._extra_graphs[0], [gp._module_graph.X]),
            alg_name='svgp_predict')
        gp.svgp_predict.diagonal_variance = False
        gp.svgp_predict.jitter = 1e-6

        y_samples = infr_pred.run(X=mx.nd.array(Xt, dtype=dtype))[0].asnumpy()
示例#10
0
    def test_log_pdf(self):
        np.random.seed(0)
        D = 2
        X = np.random.rand(10, 3)
        Y = np.random.rand(10, D)
        noise_var = np.random.rand(1)
        lengthscale = np.random.rand(3)
        variance = np.random.rand(1)

        m_gpy = GPy.models.GPRegression(X=X,
                                        Y=Y,
                                        kernel=GPy.kern.RBF(
                                            3,
                                            ARD=True,
                                            lengthscale=lengthscale,
                                            variance=variance),
                                        noise_var=noise_var)

        l_gpy = m_gpy.log_likelihood()

        dtype = 'float64'
        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.noise_var = Variable(transformation=PositiveTransformation(),
                               initial_value=mx.nd.array(noise_var,
                                                         dtype=dtype))
        kernel = RBF(input_dim=3,
                     ARD=True,
                     variance=mx.nd.array(variance, dtype=dtype),
                     lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                     dtype=dtype)
        m.Y = GPRegression.define_variable(X=m.X,
                                           kernel=kernel,
                                           noise_var=m.noise_var,
                                           shape=(m.N, D),
                                           dtype=dtype)

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)

        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype),
                           Y=mx.nd.array(Y, dtype=dtype))
        l_mf = -loss

        assert np.allclose(l_mf.asnumpy(), l_gpy)
示例#11
0
    def gen_mxfusion_model_w_mean(self, dtype, D, Z, noise_var, lengthscale,
                                  variance, rand_gen=None):
        net = nn.HybridSequential(prefix='nn_')
        with net.name_scope():
            net.add(nn.Dense(D, flatten=False, activation="tanh",
                             in_units=3, dtype=dtype))
        net.initialize(mx.init.Xavier(magnitude=3))

        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype))
        m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype))
        kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype)
        m.mean_func = MXFusionGluonFunction(net, num_outputs=1,
                                            broadcastable=True)
        m.Y = SparseGPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, mean=m.mean_func(m.X), inducing_inputs=m.Z, shape=(m.N, D), dtype=dtype)
        m.Y.factor.sgp_log_pdf.jitter = 1e-8
        return m, net
示例#12
0
    def test_log_pdf_w_samples_of_noise_var(self):
        D, X, Y, Z, noise_var, lengthscale, variance, qU_mean, \
            qU_cov_W, qU_cov_diag, qU_chol = self.gen_data()
        dtype = 'float64'
        D = 2
        Y = np.random.rand(10, D)
        qU_mean = np.random.rand(3, D)

        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype))
        m.noise_var = Variable(transformation=PositiveTransformation(),
                               shape=(m.N, D))
        kernel = RBF(input_dim=3,
                     ARD=True,
                     variance=mx.nd.array(variance, dtype=dtype),
                     lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                     dtype=dtype)
        m.Y = SVGPRegression.define_variable(X=m.X,
                                             kernel=kernel,
                                             noise_var=m.noise_var,
                                             inducing_inputs=m.Z,
                                             shape=(m.N, D),
                                             dtype=dtype)
        gp = m.Y.factor
        m.Y.factor.svgp_log_pdf.jitter = 1e-8

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)
        infr.initialize(X=X.shape, Y=Y.shape)
        infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean,
                                                               dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W,
                                                                dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag,
                                                                   dtype=dtype)

        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype),
                           Y=mx.nd.array(Y, dtype=dtype),
                           max_iter=1)
示例#13
0
    def test_log_pdf(self):
        np.random.seed(0)
        D = 2
        X = np.random.rand(10, 3)
        Y = np.random.rand(10, D)
        Z = np.random.rand(3, 3)
        qU_mean = np.random.rand(3, D)
        qU_cov_W = np.random.rand(3, 3)
        qU_cov_diag = np.random.rand(3,)
        noise_var = np.random.rand(1)
        lengthscale = np.random.rand(3)
        variance = np.random.rand(1)
        qU_chol = np.linalg.cholesky(qU_cov_W.dot(qU_cov_W.T)+np.diag(qU_cov_diag))[None,:,:]

        m_gpy = GPy.core.SVGP(X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var))
        m_gpy.q_u_mean = qU_mean
        m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol)

        l_gpy = m_gpy.log_likelihood()

        dtype = 'float64'
        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype))
        m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype))
        kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype)
        m.Y = SVGPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, inducing_inputs=m.Z, shape=(m.N, D), dtype=dtype)
        gp = m.Y.factor

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)
        infr.initialize(X=X.shape, Y=Y.shape)
        infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype)

        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype))
        l_mf = -loss

        assert np.allclose(l_mf.asnumpy(), l_gpy)
    def make_gpregr_model(self, lengthscale, variance, noise_var):
        from mxfusion.models import Model
        from mxfusion.components.variables import Variable, PositiveTransformation
        from mxfusion.modules.gp_modules import GPRegression
        from mxfusion.components.distributions.gp.kernels import RBF

        dtype = 'float64'
        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.noise_var = Variable(transformation=PositiveTransformation(),
                               initial_value=mx.nd.array(noise_var,
                                                         dtype=dtype))
        kernel = RBF(input_dim=3,
                     ARD=True,
                     variance=mx.nd.array(variance, dtype=dtype),
                     lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                     dtype=dtype)
        m.Y = GPRegression.define_variable(X=m.X,
                                           kernel=kernel,
                                           noise_var=m.noise_var,
                                           shape=(m.N, 1),
                                           dtype=dtype)
        return m
示例#15
0
    def test_draw_samples(self):
        np.random.seed(0)
        X = np.random.rand(10, 3)
        Y = np.random.rand(10, 1)
        noise_var = np.random.rand(1)
        lengthscale = np.random.rand(3)
        variance = np.random.rand(1)
        dtype = 'float64'

        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(np.random.rand(20), dtype=dtype))

        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.noise_var = Variable(transformation=PositiveTransformation(),
                               initial_value=mx.nd.array(noise_var,
                                                         dtype=dtype))
        kernel = RBF(input_dim=3,
                     ARD=True,
                     variance=mx.nd.array(variance, dtype=dtype),
                     lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                     dtype=dtype)
        m.Y = GPRegression.define_variable(X=m.X,
                                           kernel=kernel,
                                           noise_var=m.noise_var,
                                           shape=(m.N, 1),
                                           dtype=dtype,
                                           rand_gen=rand_gen)

        observed = [m.X]
        infr = Inference(ForwardSamplingAlgorithm(m,
                                                  observed,
                                                  num_samples=2,
                                                  target_variables=[m.Y]),
                         dtype=dtype)

        samples = infr.run(X=mx.nd.array(X, dtype=dtype),
                           Y=mx.nd.array(Y, dtype=dtype))[0].asnumpy()

        kern = RBF(3, True, name='rbf', dtype=dtype) + White(3, dtype=dtype)
        X_var = Variable(shape=(10, 3))
        gp = GaussianProcess.define_variable(X=X_var,
                                             kernel=kern,
                                             shape=(10, 1),
                                             dtype=dtype,
                                             rand_gen=rand_gen).factor

        variables = {
            gp.X.uuid:
            mx.nd.expand_dims(mx.nd.array(X, dtype=dtype), axis=0),
            gp.add_rbf_lengthscale.uuid:
            mx.nd.expand_dims(mx.nd.array(lengthscale, dtype=dtype), axis=0),
            gp.add_rbf_variance.uuid:
            mx.nd.expand_dims(mx.nd.array(variance, dtype=dtype), axis=0),
            gp.add_white_variance.uuid:
            mx.nd.expand_dims(mx.nd.array(noise_var, dtype=dtype), axis=0)
        }
        samples_2 = gp.draw_samples(F=mx.nd,
                                    variables=variables,
                                    num_samples=2).asnumpy()

        assert np.allclose(samples, samples_2), (samples, samples_2)
示例#16
0
    def test_prediction(self):
        np.random.seed(0)
        X = np.random.rand(10, 3)
        Xt = np.random.rand(20, 3)
        Y = np.random.rand(10, 1)
        noise_var = np.random.rand(1)
        lengthscale = np.random.rand(3)
        variance = np.random.rand(1)

        m_gpy = GPy.models.GPRegression(X=X,
                                        Y=Y,
                                        kernel=GPy.kern.RBF(
                                            3,
                                            ARD=True,
                                            lengthscale=lengthscale,
                                            variance=variance),
                                        noise_var=noise_var)

        dtype = 'float64'
        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.noise_var = Variable(transformation=PositiveTransformation(),
                               initial_value=mx.nd.array(noise_var,
                                                         dtype=dtype))
        kernel = RBF(input_dim=3,
                     ARD=True,
                     variance=mx.nd.array(variance, dtype=dtype),
                     lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                     dtype=dtype)
        m.Y = GPRegression.define_variable(X=m.X,
                                           kernel=kernel,
                                           noise_var=m.noise_var,
                                           shape=(m.N, 1),
                                           dtype=dtype)

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)

        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype),
                           Y=mx.nd.array(Y, dtype=dtype))

        # noise_free, diagonal
        mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt)

        infr2 = TransferInference(ModulePredictionAlgorithm(
            m, observed=[m.X], target_variables=[m.Y]),
                                  infr_params=infr.params,
                                  dtype=np.float64)
        res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0]
        mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0]

        assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf)
        assert np.allclose(var_gpy[:, 0], var_mf), (var_gpy[:, 0], var_mf)

        # noisy, diagonal
        mu_gpy, var_gpy = m_gpy.predict(Xt)

        infr2 = TransferInference(ModulePredictionAlgorithm(
            m, observed=[m.X], target_variables=[m.Y]),
                                  infr_params=infr.params,
                                  dtype=np.float64)
        infr2.inference_algorithm.model.Y.factor.gp_predict.noise_free = False
        res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0]
        mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0]

        assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf)
        assert np.allclose(var_gpy[:, 0], var_mf), (var_gpy[:, 0], var_mf)

        # noise_free, full_cov
        mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt, full_cov=True)

        infr2 = TransferInference(ModulePredictionAlgorithm(
            m, observed=[m.X], target_variables=[m.Y]),
                                  infr_params=infr.params,
                                  dtype=np.float64)
        infr2.inference_algorithm.model.Y.factor.gp_predict.diagonal_variance = False
        infr2.inference_algorithm.model.Y.factor.gp_predict.noise_free = True
        res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0]
        mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0]

        assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf)
        assert np.allclose(var_gpy, var_mf), (var_gpy, var_mf)

        # noisy, full_cov
        mu_gpy, var_gpy = m_gpy.predict(Xt, full_cov=True)

        infr2 = TransferInference(ModulePredictionAlgorithm(
            m, observed=[m.X], target_variables=[m.Y]),
                                  infr_params=infr.params,
                                  dtype=np.float64)
        infr2.inference_algorithm.model.Y.factor.gp_predict.diagonal_variance = False
        infr2.inference_algorithm.model.Y.factor.gp_predict.noise_free = False
        res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0]
        mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0]
        print((var_gpy, var_mf))

        assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf)
        assert np.allclose(var_gpy, var_mf), (var_gpy, var_mf)
示例#17
0
    def test_clone_cond_gp(self, dtype, X, X_isSamples, X_cond,
                           X_cond_isSamples, Y_cond, Y_cond_isSamples,
                           rbf_lengthscale, rbf_lengthscale_isSamples,
                           rbf_variance, rbf_variance_isSamples, rv,
                           rv_isSamples, num_samples):
        from scipy.linalg.lapack import dtrtrs
        X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
        X_cond_mx = prepare_mxnet_array(X_cond, X_cond_isSamples, dtype)
        Y_cond_mx = prepare_mxnet_array(Y_cond, Y_cond_isSamples, dtype)
        rbf_lengthscale_mx = prepare_mxnet_array(rbf_lengthscale,
                                                 rbf_lengthscale_isSamples,
                                                 dtype)
        rbf_variance_mx = prepare_mxnet_array(rbf_variance,
                                              rbf_variance_isSamples, dtype)
        rv_mx = prepare_mxnet_array(rv, rv_isSamples, dtype)
        rv_shape = rv.shape[1:] if rv_isSamples else rv.shape

        rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)
        m = Model()
        m.X_var = Variable(shape=(5, 2))
        m.X_cond_var = Variable(shape=(8, 2))
        m.Y_cond_var = Variable(shape=(8, 1))
        m.Y = ConditionalGaussianProcess.define_variable(X=m.X_var,
                                                         X_cond=m.X_cond_var,
                                                         Y_cond=m.Y_cond_var,
                                                         kernel=rbf,
                                                         shape=rv_shape,
                                                         dtype=dtype)

        gp = m.clone().Y.factor

        variables = {
            gp.X.uuid: X_mx,
            gp.X_cond.uuid: X_cond_mx,
            gp.Y_cond.uuid: Y_cond_mx,
            gp.rbf_lengthscale.uuid: rbf_lengthscale_mx,
            gp.rbf_variance.uuid: rbf_variance_mx,
            gp.random_variable.uuid: rv_mx
        }
        log_pdf_rt = gp.log_pdf(F=mx.nd, variables=variables).asnumpy()

        log_pdf_np = []
        for i in range(num_samples):
            X_i = X[i] if X_isSamples else X
            X_cond_i = X_cond[i] if X_cond_isSamples else X_cond
            Y_cond_i = Y_cond[i] if Y_cond_isSamples else Y_cond
            lengthscale_i = rbf_lengthscale[
                i] if rbf_lengthscale_isSamples else rbf_lengthscale
            variance_i = rbf_variance[
                i] if rbf_variance_isSamples else rbf_variance
            rv_i = rv[i] if rv_isSamples else rv
            rbf_np = GPy.kern.RBF(input_dim=2, ARD=True)
            rbf_np.lengthscale = lengthscale_i
            rbf_np.variance = variance_i
            K_np = rbf_np.K(X_i)
            Kc_np = rbf_np.K(X_cond_i, X_i)
            Kcc_np = rbf_np.K(X_cond_i)

            L = np.linalg.cholesky(Kcc_np)
            LInvY = dtrtrs(L, Y_cond_i, lower=1, trans=0)[0]
            LinvKxt = dtrtrs(L, Kc_np, lower=1, trans=0)[0]

            mu = LinvKxt.T.dot(LInvY)
            cov = K_np - LinvKxt.T.dot(LinvKxt)
            log_pdf_np.append(
                multivariate_normal.logpdf(rv_i[:, 0], mean=mu[:, 0], cov=cov))
        log_pdf_np = np.array(log_pdf_np)
        isSamples_any = any([
            X_isSamples, rbf_lengthscale_isSamples, rbf_variance_isSamples,
            rv_isSamples
        ])
        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert array_has_samples(mx.nd, log_pdf_rt) == isSamples_any
        if isSamples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples
        assert np.allclose(log_pdf_np, log_pdf_rt)