def __init__(self, cmd='molrep', **kwargs): self.parameters = [ Switch(['-h', 'help'], ''), Switch(['-i', 'interactive'], ''), Option(['-f', 'hklin'], '', equate=False, filename=True), Option(['-m', 'xyzin'], '', equate=False, filename=True), Option(['-m2', 'xyzin2'], '', equate=False, filename=True), Option(['-mx', 'fixed_xyzin'], '', equate=False, filename=True), Option(['-s', 'seqin'], '', equate=False, filename=True), Option(['-s2', 'seqin2'], '', equate=False, filename=True), Option(['-k', 'keyin'], '', equate=False, filename=True), Option(['-po', 'out_dir'], '', equate=False), Option(['-ps', 'out_scr'], '', equate=False), ] AbstractCommandline.__init__(self, cmd, **kwargs)
def __init__(self, cmd='dssp', **kwargs): self.parameters = [ Switch(['-v', 'verbose'], 'Verbose output'), Option(['-i', 'input'], "Input structure", equate=False, filename=True, is_required=True), Option(['-o', 'output'], "Output DSSP file", equate=False, filename=True, is_required=True), ] AbstractCommandline.__init__(self, cmd, **kwargs)
def __init__(self, cmd='TMscore', **kwargs): self.parameters = [ Switch([ '-c', 'complex' ], 'Run TM-score to compare two complex structures with multiple chains' ), Option(['-d', 'norm_scale'], 'TM-score normalized with an assigned scale d0', equate=False), Option(['-l', 'norm_length'], 'TM-score normalized by a specific length', equate=False), Argument(['model'], "Input model structure", filename=True, is_required=True), Argument(['native'], "Input native structure", filename=True, is_required=True), ] AbstractCommandline.__init__(self, cmd, **kwargs)
def __init__(self, cmd='TMalign', **kwargs): self.parameters = [ Argument(['chain1'], 'first PDB structure', filename=True, is_required=True), Argument(['chain2'], 'second PDB structure', filename=True, is_required=True), Option(['-i', 'aln_in'], 'an alignment specified in fasta file', equate=False, filename=True), Option(['-I', 'aln_out'], 'stick the alignment to this file', equate=False, filename=True), Option( ['-o', 'superposition'], "output the superposition to 'TM.sup', 'TM.sup_all' and 'TM.sup_atm'", equate=False, filename=True), Switch( ['-a', 'normalized'], 'TM-score normalized by the average length of two proteins'), Option(['-L', 'assigned_length'], 'TM-score normalized by an assigned length (>L_min)', equate=False), Option(['-d', 'scale_factor'], 'TM-score scaled by an assigned d0', equate=False), Option(['-m', 'rotation_matrix'], 'output TM-align rotation matrix', equate=False, filename=True), ] AbstractCommandline.__init__(self, cmd, **kwargs)
def __init__(self, cmd='maxcluster', **kwargs): if not self.options_ok(**kwargs): msg = "Unknown combination: Please use one of the following:" \ " -e [file] PDB experiment" \ " -p [file] PDB prediction" \ " OR" \ " -l [file] File containing a list of PDB model fragments" \ " OR" \ " -e [file] PDB experiment" \ " -l [file] File containing a list of PDB model fragments" raise RuntimeError(msg) self.parameters = [ Option(['-e', 'pdb_experiment'], 'PDB experiment', equate=False, filename=True), Option(['-p', 'pdb_prediction'], 'PDB prediction', equate=False, filename=True), Option(['-l', 'pdb_list'], 'File containing a list of PDB model fragments', equate=False, filename=True), # OPTIONS Option(['-L', 'log_level'], 'Log level (default is 4 for single MaxSub, 1 for lists)', equate=False), Option(['-d', 'distance_cutoff'], 'The distance cut-off for search (default auto-calibrate)', equate=False), Option( ['-N', 'norm_length'], 'The normalisation length for TM score (default is length of experiment)', equate=False), Switch(['-rmsd', 'rmsd'], 'Perform only RMSD fit'), Option(['-i', 'maxsubdom_iterations'], 'MaxSubDom iterations (default = 1)', equate=False), Switch(['-in', 'sequence_independent'], 'Sequence independant mode'), # CLUSTERING OPTIONS Option(['-C', 'cluster_method'], "Cluster method:" " 0 - No clustering" " 1 - Single linkage" " 2 - Average linkage" " 3 - Maximum linkage" " 4 - Neighbour pairs (min size)" " 5 - Neighbour pairs (absolute size)" "(default = 5)", equate=False), Option( ['-T', 'init_cluster_threshold'], 'Initial clustering threshold (default RMSD = 4; MaxSub = 0.5)', equate=False), Option( ['-Tm', 'max_cluster_threshold'], 'Maximum clustering threshold (default RMSD = 8; MaxSub = 0.8)', equate=False), Option( ['-a', 'adj_cluster_threshold'], 'Clustering threshold adjustment (default RMSD = 0.2; MaxSub = 0.05)', equate=False), Option(['-is', 'init_cluster_size'], 'Initial cluster size (default = 50)', equate=False), Option(['-ms', 'min_cluster_size'], 'Minimum cluster size (default = 5)', equate=False), Option(['-s', 'score_threshold'], '3D-jury score threshold (default = 0.2)', equate=False), Option(['-P', 'pair_threshold'], '3D-jury pair threshold (default = 20)', equate=False) ] AbstractCommandline.__init__(self, cmd, **kwargs)
def __init__(self, cmd='theseus', **kwargs): if 'pdb_files' in kwargs and (isinstance(kwargs['pdb_files'], list) or isinstance(kwargs['pdb_files'], tuple)): kwargs['pdb_files'] = " ".join(kwargs['pdb_files']) self.parameters = [ Option( ['-a', 'atoms'], "atoms to include in superposition" " 0 = alpha carbons and phosphorous atoms" " 1 = backbone" " 2 = all" " 3 = alpha and beta carbons" " 4 = all heavy atoms (all but hydrogens)" " or" " a colon-delimited string specifying the atom-types PDB-style" "e.g., -a ' CA : N'" "selects the alpha carbons and backone nitrogens", equate=False), Switch(['-f', 'first_model'], "only read the first model of a multi-model PDB file"), Option(['-i', 'niteration'], "maximum iterations {200}", equate=False), Switch(['-l', 'least_square'], "superimpose with conventional least squares method"), Option(['-s', 'residues_incl'], "residues to select (e.g. -s15-45:50-55) {all}", equate=False), Option(['-S', 'residues_excl'], "residues to exclude (e.g. -S15-45:50-55) {none}", equate=False), Switch(['-v' 'ml_variance_weighting'], "use ML variance weighting (no correlations)"), # Input/output options Switch(['--amber', 'amber'], "for reading AMBER8 formatted PDB files"), Option( ['-A', 'alignment'], "sequence alignment file to use as a guide (CLUSTAL or A2M format)", equate=False, filename=True), Switch(['-F', 'print_fasta'], "print FASTA files of the sequences in PDB files and quit"), Switch([ '-I', 'no_superposition' ], "just calculate statistics for input file (don't superposition)" ), Option( ['-M', 'sequence_map'], "file that maps sequences in the alignment file to PDB files", equate=False, filename=True), Option(['-r', 'root_name'], 'root name for output files {theseus}', equare=False), # Principal components analysis Switch( ['-C', 'covariance_matrix'], "use covariance matrix for PCA (correlation matrix is default)" ), Option(['-P', 'principal_components'], "# of principal components to calculate {0}", equate=False), # Morphometrics Switch(['-d', 'scale_factors'], "calculate scale factors (for morphometrics)"), Switch(['-q', 'rohlf_files'], "read and write Rohlf TPS morphometric landmark files"), ArgumentList(['pdb_files'], 'Input pdb files', filename=True, is_required=True), ] AbstractCommandline.__init__(self, cmd, **kwargs)