示例#1
0
def load_mobilenet1_0(ctx):
    return vision.mobilenet1_0(pretrained=True, ctx=ctx, prefix="")
示例#2
0
import os
import random
import time

import mxnet as mx
import mxnet.ndarray as nd

from mxnet.gluon.model_zoo.vision import mobilenet1_0
from mxnet import init, image, autograd, nd
from mxnet.image import color_normalize
from mxnet.gluon.data.vision import ImageRecordDataset
import mxnet.gluon as gluon

pretrained_net = mobilenet1_0(pretrained=True)
net = mobilenet1_0(classes=2)

net.features = pretrained_net.features
net.output.initialize(init.Xavier())

license_map = {'d': [], 'n': []}

license_to_idx = {'n': 0, 'd': 1}

data_dir = "C:\\Users\\Jason\\Documents\\Python Projects\\ml\\hackathon\\licenses mxnet"
fnames = os.listdir(data_dir)
counter = 0
for fn in fnames:
    arr = fn.split('_')
    category = arr[0]
    license_map[category].append({
        'idx': counter,
示例#3
0
    train_rec = os.path.join(data_dir, 'train/img.rec')
    validation_rec = os.path.join(data_dir, 'validation/img.rec')
    model_out_path = os.path.join(data_dir, '../models/{}.params'.format(model_name))

    # load data
    train_iterator = ImageRecordDataset(
        filename=train_rec,
        transform=lambda X, y: transform(X, y, train_augs)
    )
    validation_iterator = ImageRecordDataset(
        filename=validation_rec,
        transform=lambda X, y: transform(X, y, test_augs)
    )

    # instantiate source model
    pretrained_net = mobilenet1_0(pretrained=True, prefix='model_')
    # instantiate target model
    net = mobilenet1_0(classes=2, prefix='model_')
    # transfer non output layers from source model to target model
    net.features = pretrained_net.features
    # initializing parameters for output layers of target model
    net.output.initialize(init.Xavier())

    # train target model
    start = time.time()
    train(net, train_iterator, validation_iterator, ctx, batch_size=batch_size, epochs=epochs, learning_rate=lr)
    end = time.time()
    print('\nTOTAL TIME ELAPSED: {}s\n'.format(end - start))

    # save target model's learned parameters
    net.collect_params().save(model_out_path)
示例#4
0
##################
# Hyperparameter #
#----------------#
ctx = mx.cpu()
lr = 0.05
epochs = 10
momentum = 0.9
batch_size = 64
#----------------#
# Hyperparameter #
##################

################## model
from mxnet.gluon.model_zoo import vision
net = vision.mobilenet1_0(classes=10, pretrained=False, ctx=ctx)
# net = vision.mobilenet0_75(classes=10, pretrained=False, ctx=ctx)
# net = vision.mobilenet0_5(classes=10, pretrained=False, ctx=ctx)
# net = vision.mobilenet0_25(classes=10, pretrained=False, ctx=ctx)

################## 그래프
import gluoncv
inputShape = (1, 3, 224, 224)
gluoncv.utils.viz.plot_network(net, shape=inputShape)


##### 전처리 ##############################################
def transformer(data, label):
    data = mx.image.imresize(data, 224, 224)
    data = mx.nd.transpose(data, (2, 0, 1))
    data = data.astype(np.float32)