示例#1
0
 def __init__(self,
              channels,
              stride,
              downsample=False,
              in_channels=0,
              **kwargs):
     super(BottleneckV2, self).__init__(**kwargs)
     self.bn1 = nn.BatchNorm()
     self.conv1 = nn.Conv3D(channels // 4,
                            kernel_size=1,
                            strides=1,
                            use_bias=False)
     self.bn2 = nn.BatchNorm()
     self.conv2 = _conv3x3(channels // 4, stride, channels // 4)
     self.bn3 = nn.BatchNorm()
     self.conv3 = nn.Conv3D(channels,
                            kernel_size=1,
                            strides=1,
                            use_bias=False)
     if downsample:
         self.downsample = nn.Conv3D(channels,
                                     1,
                                     stride,
                                     use_bias=False,
                                     in_channels=in_channels)
     else:
         self.downsample = None
示例#2
0
    def __init__(self,
                 inplanes,
                 planes,
                 strides=1,
                 downsample=None,
                 head_conv=1,
                 norm_layer=BatchNorm,
                 norm_kwargs=None,
                 layer_name=''):
        super(Bottleneck, self).__init__()

        bottleneck = nn.HybridSequential(prefix=layer_name)
        with bottleneck.name_scope():
            if head_conv == 1:
                self.conv1 = nn.Conv3D(in_channels=inplanes, channels=planes, kernel_size=1, use_bias=False)
                self.bn1 = norm_layer(in_channels=planes, **({} if norm_kwargs is None else norm_kwargs))
            elif head_conv == 3:
                self.conv1 = nn.Conv3D(in_channels=inplanes, channels=planes, kernel_size=(3, 1, 1), padding=(1, 0, 0), use_bias=False)
                self.bn1 = norm_layer(in_channels=planes, **({} if norm_kwargs is None else norm_kwargs))
            else:
                raise ValueError("Unsupported head_conv!")
            self.conv2 = nn.Conv3D(in_channels=planes, channels=planes, kernel_size=(1, 3, 3), strides=(1, strides, strides), padding=(0, 1, 1), use_bias=False)
            self.bn2 = norm_layer(in_channels=planes, **({} if norm_kwargs is None else norm_kwargs))
            self.conv3 = nn.Conv3D(in_channels=planes, channels=planes * self.expansion, kernel_size=1, strides=1, use_bias=False)
            self.bn3 = norm_layer(in_channels=planes * self.expansion, gamma_initializer='zeros', **({} if norm_kwargs is None else norm_kwargs))
            self.relu = nn.Activation('relu')
            self.downsample = downsample
示例#3
0
 def __init__(self, in_channel, **kwargs):
     super(TCL, self).__init__()
     self.branch1 = nn.HybridSequential()
     self.branch1.add(
         nn.Conv3D(in_channels=in_channel,
                   channels=32,
                   kernel_size=(3, 1, 1),
                   strides=(1, 1, 1),
                   padding=(1, 0, 0),
                   weight_initializer=init.Xavier(),
                   bias_initializer='zero'),
         nn.Activation('relu'),
         #                nn.BatchNorm(),
         nn.MaxPool3D(pool_size=(2, 1, 1), strides=(2, 1, 1)))
     self.branch2 = nn.HybridSequential()
     self.branch2.add(
         nn.Conv3D(in_channels=in_channel,
                   channels=32,
                   kernel_size=(5, 1, 1),
                   strides=(1, 1, 1),
                   padding=(2, 0, 0),
                   weight_initializer=init.Xavier(),
                   bias_initializer='zero'),
         nn.Activation('relu'),
         #                nn.BatchNorm(),
         nn.MaxPool3D(pool_size=(2, 1, 1), strides=(2, 1, 1)))
示例#4
0
 def __init__(self, in_channel,out_channel,spatial_stride=1,temporal_stride=1,**kwargs):
     super(Res21D_Block,self).__init__()
     self.MidChannel1 = int( (27*in_channel*out_channel) / (9*in_channel + 3*out_channel) )
     self.MidChannel2 = int( (27*out_channel*out_channel) / (12 * out_channel) )
     self.conv1_2D = nn.Conv3D(in_channels=in_channel, channels=self.MidChannel1, kernel_size=(1,3,3),
                               strides=(1,spatial_stride,spatial_stride),padding=(0,1,1),weight_initializer=init.Xavier(),bias_initializer='zero')
     self.bn1_2D = nn.BatchNorm(in_channels=self.MidChannel1)
     self.conv1_1D = nn.Conv3D(in_channels=self.MidChannel1, channels=out_channel, kernel_size=(3,1,1),
                               strides=(temporal_stride,1,1),padding=(1,0,0),weight_initializer=init.Xavier(),bias_initializer='zero')
     self.bn1_1D = nn.BatchNorm(in_channels=out_channel)
     self.conv2_2D = nn.Conv3D(in_channels=out_channel, channels=self.MidChannel2, kernel_size=(1,3,3),
                               strides=(1,1,1),padding=(0,1,1),weight_initializer=init.Xavier(),bias_initializer='zero')
     self.bn2_2D = nn.BatchNorm(in_channels=self.MidChannel2)
     self.conv2_1D = nn.Conv3D(in_channels=self.MidChannel2, channels=out_channel, kernel_size=(3,1,1),strides=(1,1,1),
                               padding=(1,0,0),weight_initializer=init.Xavier(),bias_initializer='zero')
     self.bn2_1D = nn.BatchNorm(in_channels=out_channel)
     self.relu = nn.Activation('relu')
     
     if in_channel != out_channel or spatial_stride != 1 or temporal_stride != 1:
         self.down_sample = nn.HybridSequential()
         self.down_sample.add(
                 nn.Conv3D(in_channels=in_channel, channels=out_channel, kernel_size=(1,1,1),
                           strides=(temporal_stride,spatial_stride,spatial_stride),weight_initializer=init.Xavier(),use_bias=False),
                 nn.BatchNorm(in_channels=out_channel) )
     else:
         self.down_sample = None
示例#5
0
 def __init__(self,
              channels,
              stride,
              downsample=False,
              in_channels=0,
              **kwargs):
     super(BottleneckV1, self).__init__(**kwargs)
     self.body = nn.HybridSequential(prefix='')
     self.body.add(nn.Conv3D(channels // 4, kernel_size=1, strides=stride))
     self.body.add(nn.BatchNorm())
     self.body.add(nn.Activation('relu'))
     self.body.add(_conv3x3(channels // 4, 1, channels // 4))
     self.body.add(nn.BatchNorm())
     self.body.add(nn.Activation('relu'))
     self.body.add(nn.Conv3D(channels, kernel_size=1, strides=1))
     self.body.add(nn.BatchNorm())
     if downsample:
         self.downsample = nn.HybridSequential(prefix='')
         self.downsample.add(
             nn.Conv3D(channels,
                       kernel_size=1,
                       strides=stride,
                       use_bias=False,
                       in_channels=in_channels))
         self.downsample.add(nn.BatchNorm())
     else:
         self.downsample = None
示例#6
0
    def __init__(self,
                 inplanes,
                 planes,
                 midplanes,
                 stride=1,
                 padding=1,
                 norm_layer=BatchNorm,
                 norm_kwargs=None,
                 **kwargs):
        super(Conv2Plus1D, self).__init__()

        with self.name_scope():
            self.conv1 = nn.Conv3D(in_channels=inplanes,
                                   channels=midplanes,
                                   kernel_size=(1, 3, 3),
                                   strides=(1, stride, stride),
                                   padding=(0, padding, padding),
                                   use_bias=False)
            self.bn1 = norm_layer(
                in_channels=midplanes,
                **({} if norm_kwargs is None else norm_kwargs))
            self.relu = nn.Activation('relu')
            self.conv2 = nn.Conv3D(in_channels=midplanes,
                                   channels=planes,
                                   kernel_size=(3, 1, 1),
                                   strides=(stride, 1, 1),
                                   padding=(padding, 0, 0),
                                   use_bias=False)
示例#7
0
def get_R2plus1d(num_class=101,
                 no_bias=0,
                 model_depth=18,
                 final_spatial_kernel=7,
                 final_temporal_kernel=4):
    comp_count = 0
    net = nn.Sequential()
    net.add(
        nn.Conv3D(channels=45,
                  kernel_size=(1, 7, 7),
                  strides=(1, 2, 2),
                  padding=(0, 3, 3)), nn.BatchNorm(),
        nn.Activation(activation='relu'),
        nn.Conv3D(channels=64,
                  kernel_size=(3, 1, 1),
                  strides=(1, 1, 1),
                  padding=(1, 0, 0)), nn.BatchNorm(),
        nn.Activation(activation='relu'))

    (n1, n2, n3, n4) = BLOCK_CONFIG[model_depth]

    # conv_2x
    for _ in range(n1):
        net.add(R3DBlock(input_filter=64, num_filter=64,
                         comp_index=comp_count))
        comp_count += 1

    #conv_3x
    net.add(
        R3DBlock(input_filter=64,
                 num_filter=128,
                 comp_index=comp_count,
                 downsampling=True))
    comp_count += 1
    for _ in range(n2 - 1):
        net.add(
            R3DBlock(input_filter=128, num_filter=128, comp_index=comp_count))
        comp_count += 1
    #conv_4x
    net.add(R3DBlock(128, 256, comp_index=comp_count, downsampling=True))
    comp_count += 1

    for _ in range(n3 - 1):
        net.add(R3DBlock(256, 256))
        comp_count += 1
    #conv_5x
    net.add(R3DBlock(256, 512, comp_index=comp_count, downsampling=True))
    for _ in range(n4 - 1):
        net.add(R3DBlock(512, 512, comp_count))
        comp_count += 1
    # final layers
    net.add(
        nn.AvgPool3D(pool_size=(final_temporal_kernel, final_spatial_kernel,
                                final_spatial_kernel),
                     strides=(1, 1, 1),
                     padding=(0, 0, 0)))
    net.add(nn.Dense(units=num_class))  #,activation='sigmoid',use_bias=True))
    return net
示例#8
0
    def __init__(self, growth_rate, **kwargs):
        super(BottConvBlock, self).__init__(**kwargs)

        bott_channels = 2 * growth_rate
        self.ops = nn.HybridSequential()
        self.ops.add(
            nn.BatchNorm(), nn.Activation(activation='relu'),
            nn.Conv3D(channels=bott_channels, kernel_size=1, use_bias=False),
            nn.BatchNorm(), nn.Activation(activation='relu'),
            nn.Conv3D(channels=bott_channels,
                      kernel_size=3,
                      strides=1,
                      padding=1,
                      use_bias=False))
 def __init__(self, channels_num, **kwargs):
     super(BlockV1, self).__init__(**kwargs)
     self.body = nn.HybridSequential(prefix='')
     self.body.add(
         nn.BatchNorm(epsilon=0.0001), nn.Activation('relu'),
         nn.Conv3D(channels=channels_num,
                   kernel_size=(3, 3, 3),
                   strides=(1, 1, 1),
                   padding=(1, 1, 1)), nn.BatchNorm(epsilon=0.0001),
         nn.Activation('relu'),
         nn.Conv3D(channels=channels_num,
                   kernel_size=(3, 3, 3),
                   strides=(1, 1, 1),
                   padding=(1, 1, 1)))
示例#10
0
 def __init__(self,**kwargs):
     super(Refiner_hybrid,self).__init__(**kwargs)
     self.layer1 = nn.HybridSequential()
     self.layer1.add(
         nn.Conv3D(32, kernel_size=4, padding=2),
         nn.BatchNorm(in_channels=32),
         nn.LeakyReLU(.2),
         nn.MaxPool3D(pool_size=2)
     )
     self.layer2 = nn.HybridSequential()
     self.layer2.add(
         nn.Conv3D(64, kernel_size=4, padding=2),
         nn.BatchNorm(in_channels=64),
         nn.LeakyReLU(.2),
         nn.MaxPool3D(pool_size=2)
     )
     self.layer3 = nn.HybridSequential()
     self.layer3.add(
         nn.Conv3D(128, kernel_size=4, padding=2),
         nn.BatchNorm(in_channels=128),
         nn.LeakyReLU(.2),
         nn.MaxPool3D(pool_size=2)
     )
     self.layer4 = nn.HybridSequential()
     self.layer4.add(
         nn.Dense(2048,activation = 'relu')
     )
     self.layer5 = nn.HybridSequential()
     self.layer5.add(
         nn.Dense(8192,activation='relu')
     )
     self.layer6 = nn.HybridSequential()
     self.layer6.add(
         nn.Conv3DTranspose(64, kernel_size=4, strides=2, padding=1, use_bias=False ),
         nn.BatchNorm(in_channels = 64),
         nn.Activation('relu')
     )
     self.layer7 = nn.HybridSequential()
     self.layer7.add(
         nn.Conv3DTranspose(32, kernel_size=4, strides=2, padding=1, use_bias=False),
         nn.BatchNorm(in_channels =32),
         nn.Activation('relu')
     )
     self.layer8 = nn.HybridSequential()
     self.layer8.add(
         nn.Conv3DTranspose(1, kernel_size=4, strides=2, padding=1, use_bias=False),
         nn.Activation('sigmoid')
     )
示例#11
0
 def __init__(self,
              input_filter,
              num_filter,
              comp_index=-1,
              downsampling=False,
              spation_batch_norm=True,
              only_spatial_downsampling=False,
              use_bias=False):
     super(R3DBlock, self).__init__()
     if comp_index is -1:
         print("error construct a residual block")
     if downsampling:
         self.use_striding = [1, 2, 2
                              ] if only_spatial_downsampling else [2, 2, 2]
     else:
         self.use_striding = [1, 1, 1]
     self.spatial_temporal_conv1 = get_spatial_temporal_conv(
         input_filter, num_filter, self.use_striding, use_bias=use_bias)
     self.bn1 = nn.BatchNorm()
     self.relu1 = nn.Activation(activation='relu')
     self.spatial_temporal_conv2 = get_spatial_temporal_conv(
         num_filter, num_filter, stride=[1, 1, 1], use_bias=use_bias)
     self.bn2 = nn.BatchNorm()
     self.num_filter = num_filter
     self.input_filter = input_filter
     self.downsampling = downsampling
     if num_filter != input_filter or downsampling:
         self.branch_conv = nn.Conv3D(channels=num_filter,
                                      kernel_size=[1, 1, 1],
                                      strides=self.use_striding,
                                      use_bias=use_bias)
         self.branch_bn = nn.BatchNorm()
示例#12
0
    def __init__(self,
                 block,
                 layers,
                 channels,
                 classes=1000,
                 thumbnail=False,
                 caption_length=50,
                 **kwargs):
        super(ResNetV1, self).__init__(**kwargs)
        assert len(layers) == len(channels) - 1
        with self.name_scope():
            self.caption_length = caption_length
            self.features = nn.HybridSequential(prefix='')
            if thumbnail:
                self.features.add(_conv3x3(channels[0], 1, 0))
            else:
                self.features.add(
                    nn.Conv3D(channels[0], 7, 2, 3, use_bias=False))
                self.features.add(nn.BatchNorm())
                self.features.add(nn.Activation('relu'))
                self.features.add(nn.MaxPool3D(3, 2, 1))

            for i, num_layer in enumerate(layers):
                stride = 1 if i == 0 else 2
                self.features.add(
                    self._make_layer(block,
                                     num_layer,
                                     channels[i + 1],
                                     stride,
                                     i + 1,
                                     in_channels=channels[i]))
            self.features.add(nn.GlobalAvgPool3D())
            #self.features.add(nn.Dense(classes, in_units=in_channels))
            self.output = nn.Dense(caption_length * caption_length)
示例#13
0
def _conv3x3(channels, stride, in_channels):
    return nn.Conv3D(channels,
                     kernel_size=3,
                     strides=stride,
                     padding=1,
                     use_bias=False,
                     in_channels=in_channels)
示例#14
0
文件: d3.py 项目: chenjunweii/danmaku
 def add(self, layers, kernel, stride, dilation, channel):
     for l in range(layers):
         self.encoder.append(nn.Conv3D(channel, 
             kernel_size = [kernel, 1, 1],
             strides = [stride, 1, 1],
             padding = [dilation, 0, 0],
             dilation = [dilation, 1, 1]))
         conv = nn.Conv3D if 'bottleneck' in self.arch else nn.Conv3DTranspose
         self.decoder.insert(0, conv(channel, 
             kernel_size = [kernel, 1, 1],
             strides = [stride, 1, 1],
             padding = [dilation, 0, 0],
             dilation = [dilation, 1, 1]))
         self.register_child(self.encoder[-1])
         self.register_child(self.decoder[0])
         if self.reconstruct:
             assert('bottleneck' not in self.arch)
             assert('encoder' in self.arch and 'decoder' in self.arch)
             channel = channel if l != layers - 1 else self.feature
             self.reconstructor.append(nn.Conv3DTranspose(channel,
                 kernel_size = [kernel, 1, 1],
                 strides = [stride, 1, 1],
                 padding = [dilation, 0, 0],
                 dilation = [dilation, 1, 1]))
             self.register_child(self.reconstructor[-1])
         if self.norm:
             self.enorm.append(self.block['norm'](axis = 2))
             self.dnorm.append(self.block['norm'](axis = 2))
             self.register_child(self.enorm[-1])
             self.register_child(self.dnorm[-1])
             if self.reconstruct:
                 self.rnorm.append(self.block['norm'](axis = 2))
                 self.register_child(self.rnorm[-1])
示例#15
0
    def __init__(self,
                 out_channels,
                 kernel_size,
                 strides=(1, 1, 1),
                 padding=(0, 0, 0),
                 dilation=(1, 1, 1),
                 groups=1,
                 layout='NCDHW',
                 activation=None,
                 use_bias=True,
                 weight_initializer=None,
                 bias_initializer='zeros',
                 in_channels=0,
                 **kwargs):
        super(Conv3DRepPad, self).__init__(**kwargs)
        self.t_axis = layout.find('D')
        if isinstance(padding, int):
            padding = (padding, padding, padding)
        self.padding = padding[0]

        self.conv = nn.Conv3D(out_channels,
                              kernel_size,
                              strides=strides,
                              padding=(0, padding[1], padding[2]),
                              dilation=dilation,
                              groups=groups,
                              layout=layout,
                              activation=activation,
                              use_bias=use_bias,
                              weight_initializer=weight_initializer,
                              bias_initializer=bias_initializer,
                              in_channels=in_channels,
                              **kwargs)
示例#16
0
    def _make_layer_slow(self,
                         inplanes,
                         planes,
                         num_blocks,
                         num_block_temp_kernel_slow=None,
                         block=Bottleneck,
                         strides=1,
                         head_conv=1,
                         norm_layer=BatchNorm,
                         norm_kwargs=None,
                         layer_name=''):
        """Build each stage of within the slow branch."""
        downsample = None
        if strides != 1 or inplanes != planes * block.expansion:
            downsample = nn.HybridSequential(prefix=layer_name + 'downsample_')
            with downsample.name_scope():
                downsample.add(
                    nn.Conv3D(in_channels=inplanes,
                              channels=planes * block.expansion,
                              kernel_size=1,
                              strides=(1, strides, strides),
                              use_bias=False))
                downsample.add(
                    norm_layer(in_channels=planes * block.expansion,
                               **({} if norm_kwargs is None else norm_kwargs)))

        layers = nn.HybridSequential(prefix=layer_name)
        cnt = 0
        with layers.name_scope():
            layers.add(
                block(inplanes=inplanes,
                      planes=planes,
                      strides=strides,
                      downsample=downsample,
                      head_conv=head_conv,
                      layer_name='block%d_' % cnt))
            inplanes = planes * block.expansion
            cnt += 1
            for _ in range(1, num_blocks):
                if num_block_temp_kernel_slow is not None:
                    if cnt < num_block_temp_kernel_slow:
                        layers.add(
                            block(inplanes=inplanes,
                                  planes=planes,
                                  head_conv=head_conv,
                                  layer_name='block%d_' % cnt))
                    else:
                        layers.add(
                            block(inplanes=inplanes,
                                  planes=planes,
                                  head_conv=1,
                                  layer_name='block%d_' % cnt))
                else:
                    layers.add(
                        block(inplanes=inplanes,
                              planes=planes,
                              head_conv=head_conv,
                              layer_name='block%d_' % cnt))
                cnt += 1
        return layers
示例#17
0
    def _make_3d_feature(self, config_3d_conv, config_3d_pool, batch_normal):
        featurizer = nn.HybridSequential(prefix='')
        conv_layer, conv_channels = config_3d_conv
        pool_size, pool_stride, pool_padding = config_3d_pool
        assert len(conv_layer) == len(conv_channels) == len(pool_size) == len(
            pool_stride) == len(pool_padding)

        for i, num in enumerate(conv_layer):
            for _ in range(num):
                featurizer.add(
                    nn.Conv3D(channels=conv_channels[i],
                              kernel_size=(3, 3, 3),
                              strides=(1, 1, 1),
                              padding=(1, 1, 1),
                              weight_initializer=init.Xavier(
                                  rnd_type='gaussian',
                                  factor_type='out',
                                  magnitude=2),
                              bias_initializer='zero'))
                if batch_normal:
                    featurizer.add(nn.BatchNorm())
                featurizer.add(nn.Activation('relu'))
            featurizer.add(
                nn.MaxPool3D(pool_size=pool_size[i],
                             strides=pool_stride[i],
                             padding=pool_padding[i]))
        # flatten to (N, 8192)
        featurizer.add(nn.Flatten())
        return featurizer
示例#18
0
    def _make_res_layer(self,
                        block,
                        planes,
                        blocks,
                        stride=1,
                        norm_layer=BatchNorm,
                        norm_kwargs=None,
                        layer_name=''):
        """Build each stage of a ResNet"""
        downsample = None

        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.HybridSequential(prefix=layer_name + 'downsample_')
            with downsample.name_scope():
                downsample.add(nn.Conv3D(in_channels=self.inplanes,
                                         channels=planes * block.expansion,
                                         kernel_size=1,
                                         strides=(stride, stride, stride),
                                         use_bias=False))
                downsample.add(norm_layer(in_channels=planes * block.expansion,
                                          **({} if norm_kwargs is None else norm_kwargs)))

        layers = nn.HybridSequential(prefix=layer_name)
        with layers.name_scope():
            layers.add(block(inplanes=self.inplanes,
                             planes=planes,
                             stride=stride,
                             downsample=downsample))

            self.inplanes = planes * block.expansion
            for _ in range(1, blocks):
                layers.add(block(inplanes=self.inplanes, planes=planes))

        return layers
示例#19
0
 def __init__(self,
              in_channel,
              out_channel,
              spatial_stride=1,
              temporal_stride=1,
              downsample=None,
              **kwargs):
     super(BasicBlock, self).__init__()
     self.conv1 = nn.Conv3D(
         in_channels=in_channel,
         channels=out_channel,
         kernel_size=(3, 3, 3),
         strides=(temporal_stride, spatial_stride, spatial_stride),
         padding=(1, 1, 1),
         weight_initializer=init.Xavier(rnd_type='gaussian',
                                        factor_type='out',
                                        magnitude=2),
         bias_initializer='zero')
     self.conv2 = nn.Conv3D(in_channels=out_channel,
                            channels=out_channel,
                            kernel_size=(3, 3, 3),
                            strides=(1, 1, 1),
                            padding=(1, 1, 1),
                            weight_initializer=init.Xavier(
                                rnd_type='gaussian',
                                factor_type='out',
                                magnitude=2),
                            bias_initializer='zero')
     self.bn1 = nn.BatchNorm(in_channels=out_channel, epsilon=0.001)
     self.bn2 = nn.BatchNorm(in_channels=out_channel, epsilon=0.001)
     self.relu1 = nn.Activation('relu')
     self.relu2 = nn.Activation('relu')
     if in_channel != out_channel or spatial_stride != 1 or temporal_stride != 1:
         self.down_sample = nn.HybridSequential()
         self.down_sample.add(
             nn.Conv3D(in_channels=in_channel,
                       channels=out_channel,
                       kernel_size=1,
                       strides=(temporal_stride, spatial_stride,
                                spatial_stride),
                       weight_initializer=init.Xavier(rnd_type='gaussian',
                                                      factor_type='out',
                                                      magnitude=2),
                       use_bias=False),
             nn.BatchNorm(in_channels=out_channel, epsilon=0.001))
     else:
         self.down_sample = None
示例#20
0
 def __init__(self, **kwargs):
     super(Merger_hybrid, self).__init__(**kwargs)
     self.layer1 = nn.HybridSequential()
     self.layer1.add(nn.Conv3D(16, kernel_size=3, padding=1),
                     nn.BatchNorm(in_channels=16), nn.LeakyReLU(.2))
     self.layer2 = nn.HybridSequential()
     self.layer2.add(nn.Conv3D(8, kernel_size=3, padding=1),
                     nn.BatchNorm(in_channels=8), nn.LeakyReLU(.2))
     self.layer3 = nn.HybridSequential()
     self.layer3.add(nn.Conv3D(4, kernel_size=3, padding=1),
                     nn.BatchNorm(in_channels=4), nn.LeakyReLU(.2))
     self.layer4 = nn.HybridSequential()
     self.layer4.add(nn.Conv3D(2, kernel_size=3, padding=1),
                     nn.BatchNorm(in_channels=2), nn.LeakyReLU(.2))
     self.layer5 = nn.HybridSequential()
     self.layer5.add(nn.Conv3D(1, kernel_size=3, padding=1),
                     nn.BatchNorm(in_channels=1), nn.LeakyReLU(.2))
示例#21
0
def conv3x3x3(in_planes, out_planes, spatial_stride=1, temporal_stride=1, dilation=1):
    "3x3x3 convolution with padding"
    return nn.Conv3D(in_channels=in_planes,
                     channels=out_planes,
                     kernel_size=3,
                     strides=(temporal_stride, spatial_stride, spatial_stride),
                     dilation=dilation,
                     use_bias=False)
示例#22
0
 def __init__(self,c2, kernel_size=3, strides=1, padding=1, activation='relu',\
                 bias=False):
     super(BasicConv, self).__init__()
     self.c1 = nn.Conv3D(c2, kernel_size=kernel_size, \
                     strides=strides, padding=padding, \
                     activation='relu', weight_initializer=init.Xavier(),
                     use_bias=bias)
     self.bn = nn.BatchNorm()
示例#23
0
 def __init__(self, out_channels, **kwargs):
     super(InputConvBlock, self).__init__(**kwargs)
     self.ops = nn.HybridSequential()
     self.ops.add(
         nn.Conv3D(channels=out_channels,
                   kernel_size=3,
                   padding=1,
                   use_bias=False), nn.BatchNorm(),
         nn.Activation(activation='relu'))
示例#24
0
def conv_factory(k=3, channels=8, bn=False):
    """A convenient conv implementation"""
    body = nn.HybridSequential()
    if bn:
        body.add((nn.BatchNorm()))
    p = int((k - 1) / 2)
    body.add((nn.Conv3D(kernel_size=k, padding=p, strides=1,
                        channels=channels)))
    return body
示例#25
0
 def __init__(self, dr_rate, **kwargs):
     super(LipNet, self).__init__(**kwargs)
     with self.name_scope():
         self.conv1 = nn.Conv3D(32, kernel_size=(3, 5, 5), strides=(1, 2, 2), padding=(1, 2, 2))
         self.bn1 = nn.InstanceNorm(in_channels=32)
         self.dr1 = nn.Dropout(dr_rate, axes=(1, 2))
         self.pool1 = nn.MaxPool3D((1, 2, 2), (1, 2, 2))
         self.conv2 = nn.Conv3D(64, kernel_size=(3, 5, 5), strides=(1, 1, 1), padding=(1, 2, 2))
         self.bn2 = nn.InstanceNorm(in_channels=64)
         self.dr2 = nn.Dropout(dr_rate, axes=(1, 2))
         self.pool2 = nn.MaxPool3D((1, 2, 2), (1, 2, 2))
         self.conv3 = nn.Conv3D(96, kernel_size=(3, 3, 3), strides=(1, 1, 1), padding=(1, 2, 2))
         self.bn3 = nn.InstanceNorm(in_channels=96)
         self.dr3 = nn.Dropout(dr_rate, axes=(1, 2))
         self.pool3 = nn.MaxPool3D((1, 2, 2), (1, 2, 2))
         self.gru1 = rnn.GRU(256, bidirectional=True)
         self.gru2 = rnn.GRU(256, bidirectional=True)
         self.dense = nn.Dense(27+1, flatten=False)
示例#26
0
 def __init__(self, out_channels, **kwargs):
     super(TransitionBlockDown, self).__init__(**kwargs)
     self.ops = nn.HybridSequential()
     self.ops.add(
         nn.BatchNorm(), nn.Activation(activation='relu'),
         nn.Conv3D(channels=out_channels,
                   kernel_size=1,
                   strides=1,
                   use_bias=False), nn.MaxPool3D(pool_size=2, strides=2))
示例#27
0
def _conv21d(out_channels,
             kernel,
             padding,
             strides,
             norm_layer=BatchNorm,
             norm_kwargs=None):
    """R(2+1)D from 'A Closer Look at Spatiotemporal Convolutions for Action Recognition'"""
    cell = nn.HybridSequential(prefix='R(2+1)D')
    if isinstance(strides, int):
        strides = (strides, strides, strides)
    cell.add(
        nn.Conv3D(out_channels,
                  kernel_size=(1, kernel, kernel),
                  strides=(1, strides[1], strides[2]),
                  padding=(0, padding, padding),
                  use_bias=False,
                  groups=1))
    cell.add(
        norm_layer(epsilon=1e-5,
                   momentum=0.9,
                   **({} if norm_kwargs is None else norm_kwargs)))
    cell.add(nn.LeakyReLU(0.1))

    if kernel == 3:  # we need to do a special repeat pad as the zeros effect the middle correct 2d pathway
        cell.add(
            Conv3DRepPad(out_channels,
                         kernel_size=(kernel, 1, 1),
                         strides=(strides[0], 1, 1),
                         padding=(1, 0, 0),
                         use_bias=False,
                         groups=out_channels))
    else:
        cell.add(
            nn.Conv3D(out_channels,
                      kernel_size=(kernel, 1, 1),
                      strides=(strides[0], 1, 1),
                      padding=(padding, 0, 0),
                      use_bias=False,
                      groups=out_channels))

    # cell.add(nn.LeakyReLU(0.1))  # this breaks the imgnet pretrain flow

    return cell
示例#28
0
 def __init__(self, channels, stride, downsample=False, in_channels=0, **kwargs):
     super(BasicBlockV2, self).__init__(**kwargs)
     self.bn1 = nn.BatchNorm()
     self.conv1 = _conv3x3(channels, stride, in_channels)
     self.bn2 = nn.BatchNorm()
     self.conv2 = _conv3x3(channels, 1, channels)
     if downsample:
         self.downsample = nn.Conv3D(channels, 1, stride, use_bias=False, in_channels=in_channels)
     else:
         self.downsample = None
示例#29
0
    def __init__(self, nclass, block, layers, dropout_ratio=0.5,
                 num_segments=1, num_crop=1, feat_ext=False, use_lateral=False,
                 init_std=0.001, ctx=None, partial_bn=False,
                 norm_layer=BatchNorm, norm_kwargs=None, **kwargs):
        super(R2Plus1D, self).__init__()
        self.partial_bn = partial_bn
        self.dropout_ratio = dropout_ratio
        self.init_std = init_std
        self.num_segments = num_segments
        self.num_crop = num_crop
        self.feat_ext = feat_ext
        self.use_lateral = use_lateral
        self.inplanes = 64
        self.feat_dim = 512 * block.expansion
               

        with self.name_scope():
            self.conv1 = nn.Conv3D(in_channels=3, channels=45, kernel_size=(1, 7, 7),
                                   strides=(1, 2, 2), padding=(0, 3, 3), use_bias=False)
            self.bn1 = norm_layer(in_channels=45, **({} if norm_kwargs is None else norm_kwargs))
            self.relu = nn.Activation('relu')
            self.conv2 = conv3x1x1(in_planes=45, out_planes=64)
            self.bn2 = norm_layer(in_channels=64, **({} if norm_kwargs is None else norm_kwargs))

            if self.partial_bn:
                if norm_kwargs is not None:
                    norm_kwargs['use_global_stats'] = True
                else:
                    norm_kwargs = {}
                    norm_kwargs['use_global_stats'] = True

            self.layer1 = self._make_res_layer(block=block,
                                               planes=64,
                                               blocks=layers[0],
                                               layer_name='layer1_')
            self.layer2 = self._make_res_layer(block=block,
                                               planes=128,
                                               blocks=layers[1],
                                               stride=2,
                                               layer_name='layer2_')
            self.layer3 = self._make_res_layer(block=block,
                                               planes=256,
                                               blocks=layers[2],
                                               stride=2,
                                               layer_name='layer3_')
            self.layer4 = self._make_res_layer(block=block,
                                               planes=512,
                                               blocks=layers[3],
                                               stride=2,
                                               layer_name='layer4_')

            self.avgpool = nn.GlobalAvgPool3D()
            self.dropout = nn.Dropout(rate=self.dropout_ratio)
            self.fc = nn.Dense(in_units=self.feat_dim, units=nclass,
                               weight_initializer=init.Normal(sigma=self.init_std))
示例#30
0
def get_spatial_temporal_conv(in_filters, out_filter, stride, use_bias=False):
    blk = nn.HybridSequential()

    i = 3 * in_filters * out_filter * 3 * 3
    i /= in_filters * 3 * 3 + 3 * out_filter
    middle_filters = int(i)
    #print("Number of middle filters: {0}".format(middle_filters))
    blk.add(
        nn.Conv3D(channels=middle_filters,
                  kernel_size=(1, 3, 3),
                  strides=(1, stride[0], stride[1]),
                  padding=(0, 1, 1),
                  use_bias=use_bias), nn.BatchNorm(),
        nn.Activation(activation='relu'),
        nn.Conv3D(channels=out_filter,
                  kernel_size=(3, 1, 1),
                  strides=(stride[0], 1, 1),
                  padding=(1, 0, 0),
                  use_bias=use_bias))
    return blk