示例#1
0
    def __init__(self,
                 test_sampler: Sampler,
                 graph: Graph,
                 hidden_layer_sizes: List[int],
                 concatenate_features: bool,
                 nodes_per_layer: int):
        super().__init__()
        layer_sizes = [graph.num_features] + hidden_layer_sizes + [graph.num_classes]

        parameter_dict = ParameterDict()
        sizes_sum = [0] + list(layer_sizes)
        for i in range(1, len(sizes_sum)):
            sizes_sum[i] += sizes_sum[i - 1]
        sizes_sum[len(layer_sizes) - 1] = 0
        additional_sizes: List[i] = sizes_sum if concatenate_features else [0] * len(layer_sizes)

        # noinspection PyTypeChecker
        self._W: List[Parameter] = [parameter_dict.get(f"W{i}",
                                                       shape=(layer_sizes[i + 1], layer_sizes[i] + additional_sizes[i]))
                                    for i in range(len(layer_sizes) - 1)]

        # noinspection PyTypeChecker
        self._b: List[Parameter] = [parameter_dict.get(f"b{i}", shape=(layer_sizes[i + 1], 1))
                                    for i in range(len(layer_sizes) - 1)]

        # noinspection PyTypeChecker
        self._g: Parameter = parameter_dict.get(f"g", shape=(layer_sizes[0], 1))

        parameter_dict.initialize(mx.init.Normal(sigma=0.1), ctx=model_ctx)

        # for w in self._W:
        #     print(w.data().shape)

        self._feature_layers: List[List[NDArray]] = []
        for layer in range(len(layer_sizes)):
            features = [v.features
                        if layer == 0 else
                        nd.zeros(shape=(layer_sizes[layer] + additional_sizes[layer], 1), ctx=data_ctx)
                        for v in graph.vertices]
            self._feature_layers.append(features)

        self._num_layers = len(self._feature_layers)
        self.parameter_dict = parameter_dict
        self.__training_sampler: Sampler = LayerWiseSampler(self, self._num_layers, nodes_per_layer)
        self.__test_sampler: Sampler = test_sampler
        self.mode = Mode.TRAINING
        self._graph = graph
        self._concatenate_features = concatenate_features
示例#2
0
    def __init__(self, graph: Graph, depth: int, train_size: int,
                 concatenate_features: bool):
        super().__init__()
        parameter_dict = ParameterDict()

        # TODO
        # noinspection PyTypeChecker
        self._W: Parameter = parameter_dict.get(
            f"W", shape=(train_size * (1 + depth), graph.num_classes))

        # TODO
        # noinspection PyTypeChecker
        self._b: Parameter = parameter_dict.get(f"b",
                                                shape=(1, graph.num_classes))

        parameter_dict.initialize(mx.init.Normal(sigma=0.1), ctx=model_ctx)
        start_time = timer()
        kernel_ctx = model_ctx

        nd_features: NDArray =\
            nd.stack(*[v.features for v in graph.vertices])\
            .reshape(graph.n, graph.num_features)\
            .as_in_context(kernel_ctx)

        print(nd_features.shape)

        # features used for similarity measure
        sim_features = nd.random.normal(scale=0.1,
                                        shape=(graph.num_features, train_size),
                                        ctx=kernel_ctx)

        features = self.rbf_kernels(nd_features, sim_features)
        # features = self.linear_kernels(nd_features, sim_features)
        # features = self.poly_kernels(nd_features, sim_features)

        features = feature_scaling(features, 0, 0.1)
        features = graph.linear_convolution(features, depth, 1,
                                            concatenate_features)

        self._features: NDArray = feature_scaling(features, 0,
                                                  0.1).as_in_context(data_ctx)
        self.parameter_dict = parameter_dict
        self.mode = Mode.TRAINING
        self.reg_const = 0.03
        end_time = timer()
        print("Kernel computation time=", end_time - start_time)
示例#3
0
class InferenceParameters(object):
    """
    The parameters and outcomes of an inference method.

    InferenceParameters is a pool of memory that contains a mapping from uuid to two types of memories
    (MXNet ParameterDict and Constants).

    :param constants: Specify a list of model variables as constants
    :type constants: {ModelComponent.uuid : mxnet.ndarray}
    :param dtype: data type for internal numerical representation
    :type dtype: {numpy.float64, numpy.float32, 'float64', 'float32'}
    :param context: The MXNet context
    :type context: {mxnet.cpu or mxnet.gpu}
    """
    def __init__(self, constants=None, dtype=None, context=None):
        self.dtype = dtype if dtype is not None else get_default_dtype()
        self.mxnet_context = context if context is not None else get_default_device(
        )
        self._constants = {}
        self._var_ties = {}
        if constants is not None:
            constant_uuids = {(k.uuid if isinstance(k, ModelComponent) else k):
                              v
                              for k, v in constants.items()}
            self._constants.update(constant_uuids)
        self._params = ParameterDict()

    def update_constants(self, constants):
        """
        Update the constants.

        :param constants: The constants to be updated.
        :type constants: {Variable: float or MXNet NDArray}
        """
        self.constants.update({
            (k.uuid if isinstance(k, ModelComponent) else k): v
            for k, v in constants.items()
        })

    def initialize_params(self, graphs, observed_uuid):
        """
        :param graphs: a list of graphs in which the parameters will be optimized.
        :type graphs: a list of FactorGraph
        :param observed_uuid: Parameter Variables that are passed in directly as data, not to be inferred.
        :type observed_uuid: list, set
        """
        if self._params is not None:
            warnings.warn(
                "InferenceParameters has already been initialized.  The existing one will be overwritten."
            )

        self._params = ParameterDict()
        for g in graphs:
            # load in parameterdict from external gluon blocks.
            for f in g.functions.values():
                if isinstance(f, GluonFunctionEvaluation):
                    self._params.update(f.function.collect_gluon_parameters())

            for var in g.get_constants():
                self._constants[var.uuid] = var.constant

            excluded = set(self._constants.keys()).union(observed_uuid)
            for var in g.get_parameters(excluded=excluded,
                                        include_inherited=False):
                var_shape = realize_shape(var.shape, self._constants)
                init = initializer.Constant(var.initial_value_before_transformation) \
                    if var.initial_value is not None else None

                self._params.get(name=var.uuid,
                                 shape=var_shape,
                                 dtype=self.dtype,
                                 allow_deferred_init=True,
                                 init=init)
            for m in g.modules.values():
                m.initialize_hidden_parameters(self._params, excluded,
                                               self._constants)

        self._params.initialize(ctx=self.mxnet_context)

    def initialize_with_carryover_params(self, graphs, observed_uuid, var_ties,
                                         carryover_params):
        """
        :param graphs: a list of graphs in which the parameters will be optimized.
        :type graphs: a list of FactorGraph
        :param observed_uuid: Parameter Variables that are passed in directly as data, not to be inferred.
        :type observed_uuid: {UUID : mx.ndarray}
        :param var_ties: A dictionary of variable maps that are tied together and use the MXNet Parameter of the dict
        value's uuid.
        :type var_ties: { UUID to tie from : UUID to tie to }
        :param carryover_params: list of InferenceParameters containing the outcomes of previous inference algorithms.
        :type carryover_params: [InferenceParameters]
        """
        # TODO: var_ties is discarded at the moment.

        var_uuid = set()
        for g in graphs:
            var_uuid = var_uuid.union(set(g.variables.keys()))
            for m in g.modules.values():
                var_uuid = var_uuid.union(set(m.hidden_parameters))

        carryover_pairs = {}
        for carryover in carryover_params:
            for uuid, v in carryover.param_dict.items():
                if uuid in var_uuid:
                    if uuid in carryover_pairs:
                        warnings.warn(
                            'The variable with UUID ' + uuid +
                            ' exists in multiple carryover parameter sets.')
                    carryover_pairs[uuid] = v

        # self._var_ties = var_ties.copy()
        # for g in graphs:
        #     # TODO: check the behavior of var_ties in graph
        #     self._var_ties.update(g.var_ties)
        # for v_uuid in self.constants:
        #     if v_uuid in self._var_ties:
        #         del self._var_ties[v_uuid]

        observed_uuid = set(observed_uuid).union(carryover_pairs.keys())
        self.initialize_params(graphs, observed_uuid)

        # carryover_pairs = {
        #     to_var_uuid: carryover.param_dict[to_var_uuid]
        #     for from_var_uuid, to_var_uuid in self._var_ties.items()
        #     for carryover in carryover_params
        #     if to_var_uuid in carryover.param_dict}
        self._params.update(carryover_pairs)

    @property
    def param_dict(self):
        return self._params

    @property
    def constants(self):
        return self._constants

    @property
    def var_ties(self):
        return self._var_ties

    def __getitem__(self, key, ctx=None):
        if not isinstance(key, Variable):
            raise KeyError(
                "The access key of inference parameter needs to be Variable, but got "
                + str(type(key)) + ".")
        pkey = key.inherited_name if key.isInherited else key.uuid
        val = self._params.get(pkey).data(ctx)
        if key.transformation is not None:
            val = key.transformation.transform(val)
        return val

    def __setitem__(self, key, item):
        if not isinstance(key, Variable):
            raise KeyError(
                "The access key of inference parameter needs to be Variable, but get "
                + str(type(key)) + ".")

        if key.type == VariableType.PARAMETER:
            if key.transformation is not None:
                item = key.transformation.inverseTransform(item)
            self._params.get(key.uuid).set_data(item)
        elif key.type == VariableType.CONSTANT:
            self._params.get(key.uuid)._value = item

    # Override contains so that it doesn't use the __getitem__ method.
    def __contains__(self, k):
        return k in self.__dict__

    @staticmethod
    def load_parameters(uuid_map=None,
                        parameters_file=None,
                        variable_constants_file=None,
                        mxnet_constants_file=None,
                        context=None,
                        dtype=None,
                        current_params=None):
        """
        Loads back a sest of InferenceParameters from files.
        :param parameters_file: These are the parameters of the previous inference algorithm.
        These are in a {uuid: mx.nd.array} mapping.
        :type mxnet_constants_file: file saved down with mx.nd.save(), so a {uuid: mx.nd.array} mapping saved
        in a binary format.
        :param mxnet_constants_file: These are the constants in mxnet format from the previous inference algorithm.
        These are in a {uuid: mx.nd.array} mapping.
        :type mxnet_constants_file: file saved down with mx.nd.save(), so a {uuid: mx.nd.array} mapping saved
        in a binary format.
        :param variable_constants_file: These are the constants in primitive format from the previous
        inference algorithm.
        :type variable_constants_file: json dict of {uuid: constant_primitive}
        """
        def with_uuid_map(item, uuid_map):
            if uuid_map is not None:
                return uuid_map[item]
            else:
                return item

        ip = InferenceParameters(context=context, dtype=dtype)

        if parameters_file is not None:
            old_params = ndarray.load(parameters_file)
            mapped_params = {
                with_uuid_map(k, uuid_map): v
                for k, v in old_params.items()
            }

            new_paramdict = ParameterDict()
            if current_params is not None:
                new_paramdict.update(current_params)

            # Do this because we need to map the uuids to the new Model
            # before loading them into the ParamDict
            for name, mapped_param in mapped_params.items():
                new_paramdict[name]._load_init(mapped_param, ip.mxnet_context)
            ip._params = new_paramdict

        new_mxnet_constants = {}
        new_variable_constants = {}
        if variable_constants_file is not None:
            import json
            with open(variable_constants_file) as f:
                old_constants = json.load(f)
                new_variable_constants = {
                    with_uuid_map(k, uuid_map): v
                    for k, v in old_constants.items()
                }
        if mxnet_constants_file is not None:
            mxnet_constants = ndarray.load(mxnet_constants_file)
            if isinstance(mxnet_constants, dict):
                new_mxnet_constants = {
                    with_uuid_map(k, uuid_map): v
                    for k, v in mxnet_constants.items()
                }
            else:
                new_mxnet_constants = {}
        ip._constants = {}
        ip._constants.update(new_variable_constants)
        ip._constants.update(new_mxnet_constants)
        return ip

    def save(self, prefix):
        """
        Saves the parameters and constants down to json files as maps from {uuid : value},
        where value is an mx.ndarray for parameters and either primitive number types or mx.ndarray for constants.
        Saves up to 3 files: prefix+["_params.json", "_variable_constants.json", "_mxnet_constants.json"]

        :param prefix: The directory and any appending tag for the files to save this Inference as.
        :type prefix: str , ex. "../saved_inferences/experiment_1"
        """
        param_file = prefix + "_params.json"
        variable_constants_file = prefix + "_variable_constants.json"
        mxnet_constants_file = prefix + "_mxnet_constants.json"
        to_save = {key: value._reduce() for key, value in self._params.items()}
        ndarray.save(param_file, to_save)

        mxnet_constants = {
            uuid: value
            for uuid, value in self._constants.items()
            if isinstance(value, mx.ndarray.ndarray.NDArray)
        }
        ndarray.save(mxnet_constants_file, mxnet_constants)

        variable_constants = {
            uuid: value
            for uuid, value in self._constants.items()
            if uuid not in mxnet_constants
        }
        import json
        with open(variable_constants_file, 'w') as f:
            json.dump(variable_constants, f, ensure_ascii=False)
class InferenceParameters(object):
    """
    The parameters and outcomes of an inference method.

    InferenceParameters is a pool of memory that contains a mapping from uuid to two types of memories
    (MXNet ParameterDict and Constants).

    :param constants: Specify a list of model variables as constants
    :type constants: {ModelComponent.uuid : mxnet.ndarray}
    :param dtype: data type for internal numerical representation
    :type dtype: {numpy.float64, numpy.float32, 'float64', 'float32'}
    :param context: The MXNet context
    :type context: {mxnet.cpu or mxnet.gpu}
    """
    def __init__(self, constants=None, dtype=None, context=None):
        self.dtype = dtype if dtype is not None else get_default_dtype()
        self.mxnet_context = context if context is not None else get_default_device()
        self._constants = {}
        self._var_ties = {}
        if constants is not None:
            constant_uuids = {
                (k.uuid if isinstance(k, ModelComponent) else k): v
                for k, v in constants.items()}
            self._constants.update(constant_uuids)
        self._params = ParameterDict()

    def update_constants(self, constants):
        """
        Update the constants.

        :param constants: The constants to be updated.
        :type constants: {Variable: float or MXNet NDArray}
        """
        self.constants.update({
            (k.uuid if isinstance(k, ModelComponent) else k): v
            for k, v in constants.items()})

    def initialize_params(self, graphs, observed_uuid):
        """
        :param graphs: a list of graphs in which the parameters will be optimized.
        :type graphs: a list of FactorGraph
        :param observed_uuid: Parameter Variables that are passed in directly as data, not to be inferred.
        :type observed_uuid: list, set
        """
        if self._params is not None:
            warnings.warn("InferenceParameters has already been initialized.  The existing one will be overwritten.")

        self._params = ParameterDict()
        for g in graphs:
            for var in g.get_constants():
                self._constants[var.uuid] = var.constant

            excluded = set(self._constants.keys()).union(observed_uuid)
            for var in g.get_parameters(excluded=excluded):
                var_shape = realize_shape(var.shape, self._constants)
                init = initializer.Constant(var.initial_value_before_transformation) \
                    if var.initial_value is not None else None

                self._params.get(name=var.uuid, shape=var_shape,
                                 dtype=self.dtype,
                                 allow_deferred_init=True, init=init)
            for m in g.modules.values():
                m.initialize_hidden_parameters(self._params, excluded, self._constants)

        self._params.initialize(ctx=self.mxnet_context)

    def initialize_with_carryover_params(self, graphs, observed_uuid, var_ties,
                                         carryover_params):
        """
        :param graphs: a list of graphs in which the parameters will be optimized.
        :type graphs: a list of FactorGraph
        :param observed_uuid: Parameter Variables that are passed in directly as data, not to be inferred.
        :type observed_uuid: {UUID : mx.ndarray}
        :param var_ties: A dictionary of variable maps that are tied together and use the MXNet Parameter of the dict
        value's uuid.
        :type var_ties: { UUID to tie from : UUID to tie to }
        :param carryover_params: list of InferenceParameters containing the outcomes of previous inference algorithms.
        :type carryover_params: [InferenceParameters]
        """
        # TODO: var_ties is discarded at the moment.

        var_uuid = set()
        for g in graphs:
            var_uuid = var_uuid.union(set(g.variables.keys()))
            for m in g.modules.values():
                var_uuid = var_uuid.union(set(m.hidden_parameters))

        carryover_pairs = {}
        for carryover in carryover_params:
            for uuid, v in carryover.param_dict.items():
                if uuid in var_uuid:
                    if uuid in carryover_pairs:
                        warnings.warn('The variable with UUID '+uuid+' exists in multiple carryover parameter sets.')
                    carryover_pairs[uuid] = v

        # self._var_ties = var_ties.copy()
        # for g in graphs:
        #     # TODO: check the behavior of var_ties in graph
        #     self._var_ties.update(g.var_ties)
        # for v_uuid in self.constants:
        #     if v_uuid in self._var_ties:
        #         del self._var_ties[v_uuid]

        observed_uuid = set(observed_uuid).union(carryover_pairs.keys())
        self.initialize_params(graphs, observed_uuid)

        # carryover_pairs = {
        #     to_var_uuid: carryover.param_dict[to_var_uuid]
        #     for from_var_uuid, to_var_uuid in self._var_ties.items()
        #     for carryover in carryover_params
        #     if to_var_uuid in carryover.param_dict}
        self._params.update(carryover_pairs)

    def fix_all(self):
        for p in self.param_dict.values():
            p.grad_req = 'null'

    @property
    def param_dict(self):
        return self._params

    @property
    def constants(self):
        return self._constants

    @property
    def var_ties(self):
        return self._var_ties

    def __getitem__(self, key, ctx=None):
        if not isinstance(key, Variable):
            raise KeyError("The access key of inference parameter needs to be Variable, but got "+str(type(key))+".")
        val = self._params.get(key.uuid).data(ctx)
        if key.transformation is not None:
            val = key.transformation.transform(val)
        return val

    def __setitem__(self, key, item):
        if not isinstance(key, Variable):
            raise KeyError("The access key of inference parameter needs to be Variable, but get "+str(type(key))+".")

        if key.type == VariableType.PARAMETER:
            if key.transformation is not None:
                item = key.transformation.inverseTransform(item)
            self._params.get(key.uuid).set_data(item)
        elif key.type == VariableType.CONSTANT:
            self._params.get(key.uuid)._value = item

    # Override contains so that it doesn't use the __getitem__ method.
    def __contains__(self, k):
        return k in self.__dict__

    @staticmethod
    def load_parameters(uuid_map=None,
                        mxnet_parameters=None,
                        variable_constants=None,
                        mxnet_constants=None,
                        context=None, dtype=None,
                        current_params=None):
        """
        Loads back a set of InferenceParameters from files.
        :param mxnet_parameters: These are the parameters of
                                     the previous inference algorithm.
        These are in a {uuid: mx.nd.array} mapping.
        :type mxnet_parameters: Dict of {uuid: mx.nd.array}
        :param mxnet_constants: These are the constants in mxnet format
                                    from the previous inference algorithm.
        These are in a {uuid: mx.nd.array} mapping.
        :type mxnet_constants:  Dict of {uuid: mx.nd.array}
        :param variable_constants: These are the constants in
                                       primitive format from the previous
        inference algorithm.
        :type variable_constants: dict of {uuid: constant primitive}
        """
        def with_uuid_map(item, uuid_map):
            if uuid_map is not None:
                return uuid_map[item]
            else:
                return item
        ip = InferenceParameters(context=context, dtype=dtype)

        mapped_params = {with_uuid_map(k, uuid_map): v
                         for k, v in mxnet_parameters.items()}

        new_paramdict = ParameterDict()
        if current_params is not None:
            new_paramdict.update(current_params)

        # Do this because we need to map the uuids to the new Model
        # before loading them into the ParamDict
        for name, mapped_param in mapped_params.items():
            new_paramdict[name]._load_init(mapped_param, ip.mxnet_context)
        ip._params = new_paramdict

        new_mxnet_constants = {}
        new_variable_constants = {}
        new_variable_constants = {with_uuid_map(k, uuid_map): v
                                  for k, v in variable_constants.items()}
        new_mxnet_constants = {with_uuid_map(k, uuid_map): v
                               for k, v in mxnet_constants.items()}

        ip._constants = {}
        ip._constants.update(new_variable_constants)
        ip._constants.update(new_mxnet_constants)
        return ip

    def get_serializable(self):
        """
        Returns three dicts:
         1. MXNet parameters {uuid: mxnet parameters, mx.nd.array}.
         2. MXNet constants {uuid: mxnet parameter (only constant types), mx.nd.array}
         3. Other constants {uuid: primitive numeric types (int, float)}
         :returns: Three dictionaries: MXNet parameters, MXNet constants, and other constants (in that order)
         :rtypes: {uuid: mx.nd.array}, {uuid: mx.nd.array}, {uuid: primitive (int/float)}
        """

        mxnet_parameters = {key: value._reduce() for key, value in self._params.items()}

        mxnet_constants = {uuid: value
                           for uuid, value in self._constants.items()
                           if isinstance(value, mx.ndarray.ndarray.NDArray)}

        variable_constants = {uuid: value
                              for uuid, value in self._constants.items()
                              if uuid not in mxnet_constants}

        return mxnet_parameters, mxnet_constants, variable_constants