示例#1
0
文件: 01_mnist.py 项目: yixuan/almond
def transform(data, label):
    data = nd.moveaxis(data, 2, 0).astype("float32") / 255
    label = label
    return data, label
示例#2
0
def data_xform(data):
    """Move channel axis to the beginning, cast to float32, and normalize to [0, 1]."""
    return nd.moveaxis(data, 2, 0).astype('float32') / 255
def to_tensor(X):
    X = X.astype(np.float32) / 255.0
    X = nd.moveaxis(X, 3, 1)
    return X
示例#4
0
def accuracy(predictions, targets):
	predictions = nd.argmax(predictions, 1)
	return nd.mean(nd.equal(predictions, targets)).asscalar() * 100

x = []
y = []
names = []
for wbc_type in os.listdir('dataset'):
    if 'normal' in wbc_type:
        label = 0
    elif 'tuberculosis' in wbc_type:
        label = 1
    img = mx.image.imread('dataset/' + wbc_type).astype('float32')
    img = mx.image.imresize(img, 128, 128)
    names.append(wbc_type)
    x.append(nd.moveaxis(img, 2, 0).asnumpy())
    y.append(label)

x = nd.array(x)
y = nd.array(y)

x /= 255.0

print(x.shape)
print(y.shape)

plt.imshow(mx.nd.moveaxis(x[0], 0, 2).asnumpy())
plt.show()

predictions = model.predict(x)
print('Test Accuracy:', accuracy(predictions, y))
示例#5
0
def moveaxis(tensor, source, target):
    return np.moveaxis(tensor, source, target)
示例#6
0
def data_xform(data):
    return nd.moveaxis(data, 2, 0).astype('float32') / 255