def forward(self, x):
			n_layer = len(self.layers)
			for i in range(n_layer):
				x = F.tanh(self.layers[i][0](x))
			for i in range(n_layer-1):
				x = F.tanh(self.layers[n_layer-i-1][1](x))
			return self.layers[0][1](x)
示例#2
0
文件: lstm.py 项目: ylxdzsw/xi-rnn
def lstm(x, h, c, Wxi, Wxf, Wxo, Whi, Whf, Who, Wxc, Whc, bi, bf, bo, bc):
    i = nd.sigmoid(nd.dot(x, Wxi) + nd.dot(h, Whi) + bi)
    f = nd.sigmoid(nd.dot(x, Wxf) + nd.dot(h, Whf) + bf)
    o = nd.sigmoid(nd.dot(x, Wxo) + nd.dot(h, Who) + bo)
    c̃ = nd.tanh(nd.dot(x, Wxc) + nd.dot(h, Whc) + bc)
    c = f * c + i * c̃
    h = o * nd.tanh(c)
    return h, c
示例#3
0
 def forward(self, x):
     x = self.pool1(F.tanh(self.conv1(x)))
     x = self.pool2(F.tanh(self.conv2(x)))
     # 0 means copy over size from corresponding dimension.
     # -1 means infer size from the rest of dimensions.
     x = x.reshape((0, -1))
     x = F.tanh(self.fc1(x))
     x = F.tanh(self.fc2(x))
     return x
示例#4
0
def foo(h, c, patch, Wxi, Wxf, Wxo, Wxg, bxi, bxf, bxo, bxg, Whi, Whf, Who,
        Whg, bhi, bhf, bho, bhg):
    i = sigmoid(linear(patch, Wxi, bxi) + linear(h, Whi, bhi))
    f = sigmoid(linear(patch, Wxf, bxf) + linear(h, Whf, bhf))
    o = sigmoid(linear(patch, Wxo, bxo) + linear(h, Who, bho))
    g = nd.tanh(linear(patch, Wxg, bxg) + linear(h, Whg, bhg))
    c = f * c + i * g
    h = o * mx.nd.tanh(c)
    return h, c, linear(h, W, b)
示例#5
0
 def residue_forward(self, x, conv_sigmoid, conv_tanh, skip_scale,
                     residue_scale):
     output = x
     output_sigmoid, output_tanh = conv_sigmoid(output), conv_tanh(output)
     output = F.sigmoid(output_sigmoid) * F.tanh(output_tanh)
     skip = skip_scale(output)
     output = residue_scale(output)
     output = output + x[:, :, -output.shape[2]:]
     return output, skip
示例#6
0
def rnn(inputs,state,*params):
    H = state
    W_xh,W_hh,b_h,W_hy,b_y = params
    outputs = []
    for X in inputs:
        H = nd.tanh(nd.dot(X,W_xh) + nd.dot(H,W_hh) + b_h)
        Y = nd.dot(H,W_hy) + b_y
        outputs.append(Y)
    return (outputs,H)
示例#7
0
文件: main.py 项目: z01nl1o02/tests
def rnn(inputs, state, *params):
    H = state
    W_xh, W_hh, b_h, W_hy, b_y = params
    outputs = []
    for X in inputs:
        H = nd.tanh(nd.dot(X, W_xh) + nd.dot(H, W_hh) + b_h)
        Y = nd.dot(H, W_hy) + b_y
        outputs.append(Y)
    return (outputs, H)
示例#8
0
def rnn(inputs, H):
    # inputs: seq_len ? batch_size x vocab_size ??
    # H: batch_size x num_hidden ??
    # outputs: seq_len ? batch_size x vocab_size ??
    outputs = []
    for X in inputs:
        H = nd.tanh(nd.dot(X, Wxh) + nd.dot(H, Whh) + bh)
        Y = nd.dot(H, Why) + by
        outputs.append(Y)
    return (outputs, H)
示例#9
0
def foo(h, c, patch, Wxi, Wxf, Wxo, Wxg, bxi, bxf, bxo, bxg, Whi, Whf, Who,
        Whg, bhi, bhf, bho, bhg):
    i = sigmoid(linear(patch, Wxi, bxi) + linear(h, Whi, bhi))
    f = sigmoid(linear(patch, Wxf, bxf) + linear(h, Whf, bhf))
    o = sigmoid(linear(patch, Wxo, bxo) + linear(h, Who, bho))
    print('break the consecutive assignments')
    g = nd.tanh(linear(patch, Wxg, bxg) + linear(h, Whg, bhg))
    c = f * c + i * g
    h = o * mx.nd.tanh(c)
    return h, c, linear(h, W, b)
示例#10
0
def lstm_rnn(inputs, state_h, state_c, *params):
    # inputs: num_steps 个尺寸为 batch_size * vacab_size 矩阵
    # H: 尺寸为 batch_size * hidden_dim 矩阵
    # outputs: num_steps 个尺寸为 batch_size * vacab_size 矩阵
    [W_xi, W_hi, W_xi, W_hi, b_i, W_xf, W_hf,
     b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hy, b_y] = params

    H = state_h
    C = state_c
    outputs = []
    for X in inputs:
        I = nd.sigmoid(nd.dot(X, W_xi) + nd.dot(H, W_hi) + b_i)
        F = nd.sigmoid(nd.dot(X, W_xf) + nd.dot(H, W_hf) + b_f)
        O = nd.sigmoid(nd.dot(X, W_xo) + nd.dot(H, W_ho) + b_o)
        C_tilda = nd.tanh(nd.dot(X, W_xc) + nd.dot(H, W_hc) + b_c)
        C = F * C + I * C_tilda
        H = O * nd.tanh(C)
        Y = nd.dot(H, W_hy) + b_y
        outputs.append(Y)
    return (outputs, H, C)
示例#11
0
文件: lstm.py 项目: hotpxl/minpy-jit
def foo(h, c, patch, Wxi, Wxf, Wxo, Wxg, bxi, bxf, bxo, bxg, Whi, Whf, Who,
        Whg, bhi, bhf, bho, bhg):
    i = sigmoid(linear(patch, Wxi, bxi) + linear(h, Whi, bhi))
    f = sigmoid(linear(patch, Wxf, bxf) + linear(h, Whf, bhf))
    # CR(haoran): adding the following line will create a new segment, is this a bug?
    # XCR(yutian): it is a bug. Already fixed.
    sigmoid(f)
    o = sigmoid(linear(patch, Wxo, bxo) + linear(h, Who, bho))
    g = nd.tanh(linear(patch, Wxg, bxg) + linear(h, Whg, bhg))
    c = f * c + i * g
    h = o * mx.nd.tanh(c)
    return h, c, linear(h, W, b)
    def observe_reward_value(
        self,
        state_arr,
        action_arr,
        meta_data_arr=None,
    ):
        '''
        Compute the reward value.
        
        Args:
            state_arr:              Tensor of state.
            action_arr:             Tensor of action.
            meta_data_arr:          Meta data of actions.

        Returns:
            Reward value.
        '''
        if state_arr is not None:
            t_hot_loss = -nd.mean(
                nd.flatten(state_arr) * nd.flatten(action_arr),
                axis=0,
                exclude=True)
            reward_value_arr = t_hot_loss
            reward_value_arr = nd.expand_dims(reward_value_arr, axis=1)
        else:
            reward_value_arr = nd.zeros((action_arr.shape[0], 1),
                                        ctx=action_arr.context)

        if meta_data_arr is not None:
            add_reward_arr = nd.zeros((action_arr.shape[0], 1),
                                      ctx=action_arr.context)
            for batch in range(meta_data_arr.shape[0]):
                keyword = "".join(meta_data_arr[batch].reshape(1,
                                                               -1).tolist()[0])
                reward = 0.0
                for i in range(len(self.__txt_list)):
                    key = self.__txt_list[i].index(keyword)
                    reward = reward + ((len(self.__txt_list[i]) - key) /
                                       len(self.__txt_list[i]))
                    reward = reward + (self.__txt_list[i].count(keyword) /
                                       len(self.__txt_list[i]))
                add_reward_arr[batch] = reward / len(self.__txt_list)
        else:
            add_reward_arr = nd.zeros((meta_data_arr.shape[0], 1),
                                      ctx=meta_data_arr.context)

        reward_value_arr = (reward_value_arr * self.__s_a_dist_weight) + (
            add_reward_arr * (1 - self.__s_a_dist_weight))
        reward_value_arr = nd.tanh(reward_value_arr)
        return reward_value_arr
示例#13
0
def gru_rnn(inputs, H, *params):
    # inputs: num_steps 个尺寸为 batch_size * vocab_size 矩阵
    # H: 尺寸为 batch_size * hidden_dim 矩阵
    # outputs: num_steps 个尺寸为 batch_size * vocab_size 矩阵
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hy, b_y = params
    outputs = []
    for X in inputs:
        Z = nd.sigmoid(nd.dot(X, W_xz) + nd.dot(H, W_hz) + b_z)
        R = nd.sigmoid(nd.dot(X, W_xr) + nd.dot(H, W_hr) + b_r)
        H_tilda = nd.tanh(nd.dot(X, W_xh) + R * nd.dot(H, W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
        Y = nd.dot(H, W_hy) + b_y
        outputs.append(Y)
    return (outputs, H)
示例#14
0
def rnn(_inputs, initial_state, *parameters):
    # _inputs: a list with length num_steps,
    # corresponding element: batch_size * input_dim matrix

    H = initial_state

    W_xh, W_hh, b_h, W_hy, b_y = parameters

    _outputs = []

    for X in _inputs:
        # compute hidden state from input and last/initial hidden state
        H = nd.tanh(nd.dot(X, W_xh) + nd.dot(H, W_hh) + b_h)
        # compute output from hidden state
        Y = nd.dot(H, W_hy) + b_y
        _outputs.append(Y)

    return _outputs, H
示例#15
0
    def LSTM_Cell(input, h_state, c_state):
        for x in input:
            f_t = nd.Activation(nd.FullyConnected(
                data=x, weight=wxhf, no_bias=True, num_hidden=num_hidden) +
                                nd.FullyConnected(data=h_state,
                                                  weight=whhf,
                                                  no_bias=True,
                                                  num_hidden=num_hidden) + bhf,
                                act_type="sigmoid")
            i_t = nd.Activation(nd.FullyConnected(
                data=x, weight=wxhi, no_bias=True, num_hidden=num_hidden) +
                                nd.FullyConnected(data=h_state,
                                                  weight=whhi,
                                                  no_bias=True,
                                                  num_hidden=num_hidden) + bhi,
                                act_type="sigmoid")
            o_t = nd.Activation(nd.FullyConnected(
                data=x, weight=wxho, no_bias=True, num_hidden=num_hidden) +
                                nd.FullyConnected(data=h_state,
                                                  weight=whho,
                                                  no_bias=True,
                                                  num_hidden=num_hidden) + bho,
                                act_type="sigmoid")
            g_t = nd.Activation(nd.FullyConnected(
                data=x, weight=wxhg, no_bias=True, num_hidden=num_hidden) +
                                nd.FullyConnected(data=h_state,
                                                  weight=whhg,
                                                  no_bias=True,
                                                  num_hidden=num_hidden) + bhg,
                                act_type="tanh")
            c_state = nd.multiply(f_t, c_state) + nd.multiply(i_t, g_t)
            h_state = nd.multiply(o_t, nd.tanh(c_state))

        output = nd.FullyConnected(data=h_state,
                                   weight=why,
                                   bias=by,
                                   num_hidden=num_outputs)
        output = nd.softmax(data=output)
        return output, h_state, c_state
示例#16
0
def train(cep,
          pool_size,
          epochs,
          train_data,
          val_data,
          ctx,
          netEn,
          netDe,
          netD,
          netD2,
          netDS,
          trainerEn,
          trainerDe,
          trainerD,
          trainerD2,
          trainerSD,
          lambda1,
          batch_size,
          expname,
          append=True,
          useAE=False):
    im_mean = mean_image.load_mean()
    im_mean = im_mean.broadcast_to(
        (batch_size, np.shape(im_mean)[0], np.shape(im_mean)[1],
         np.shape(im_mean)[2]))  #im_mean = nd.transpose(im_mean, (2, 0, 1))
    tp_file = open(expname + "_trainloss.txt", "w")
    tp_file.close()
    text_file = open(expname + "_validtest.txt", "w")
    text_file.close()
    #netGT, netDT, _, _ = set_test_network(opt.depth, ctx, opt.lr, opt.beta1,opt.ndf,  opt.ngf, opt.append)
    GAN_loss = gluon.loss.SigmoidBinaryCrossEntropyLoss()
    L1_loss = gluon.loss.L2Loss()
    image_pool = imagePool.ImagePool(pool_size)
    metric = mx.metric.CustomMetric(facc)
    metric2 = mx.metric.CustomMetric(facc)
    metricStrong = mx.metric.CustomMetric(facc)
    metricMSE = mx.metric.MSE()
    loss_rec_G = []
    loss_rec_D = []
    loss_rec_R = []
    acc_rec = []
    acc2_rec = []
    loss_rec_D2 = []
    loss_rec_G2 = []
    lr = 2.0 * batch_size
    stamp = datetime.now().strftime('%Y_%m_%d-%H_%M')
    logging.basicConfig(level=logging.DEBUG)
    if cep == -1:
        cep = 0
    else:
        netEn.load_params('checkpoints/' + opt.expname + '_' + str(cep) +
                          '_En.params',
                          ctx=ctx)
        netDe.load_params('checkpoints/' + opt.expname + '_' + str(cep) +
                          '_De.params',
                          ctx=ctx)
        netD.load_params('checkpoints/' + opt.expname + '_' + str(cep) +
                         '_D.params',
                         ctx=ctx)
        netD2.load_params('checkpoints/' + opt.expname + '_' + str(cep) +
                          '_D2.params',
                          ctx=ctx)
        netDS.load_params('checkpoints/' + opt.expname + '_' + str(cep) +
                          '_SD.params',
                          ctx=ctx)
    for epoch in range(cep + 1, epochs):

        tic = time.time()
        btic = time.time()
        train_data.reset()
        iter = 0
        #print('learning rate : '+str(trainerD.learning_rate ))
        for batch in train_data:
            ############################
            # (1) Update D network: maximize log(D(x, y)) + log(1 - D(x, G(x, z)))
            ###########################
            real_in = batch.data[0].as_in_context(ctx) - im_mean.as_in_context(
                ctx)
            real_out = batch.data[1].as_in_context(
                ctx) - im_mean.as_in_context(ctx)
            fake_latent = netEn(real_in)
            #real_latent = nd.random_normal(loc=0, scale=1, shape=fake_latent.shape, ctx=ctx)
            real_latent = nd.random.uniform(low=-1,
                                            high=1,
                                            shape=fake_latent.shape,
                                            ctx=ctx)
            fake_out = netDe(fake_latent)
            fake_concat = nd.concat(real_in, fake_out,
                                    dim=1) if append else fake_out
            eps2 = nd.random.uniform(low=-1,
                                     high=1,
                                     shape=fake_latent.shape,
                                     ctx=ctx)
            if epoch > 150:  # and epoch%10==0:
                mu = nd.random.uniform(low=-1,
                                       high=1,
                                       shape=fake_latent.shape,
                                       ctx=ctx)
                #isigma = nd.ones((batch_size,64,1,1),ctx=ctx)*0.000001
                mu.attach_grad()
                #sigma.attach_grad()
                images = netDe(mu)
                fake_img1T = nd.concat(images[0], images[1], images[2], dim=1)
                fake_img2T = nd.concat(images[3], images[4], images[5], dim=1)
                fake_img3T = nd.concat(images[6], images[7], images[8], dim=1)
                fake_img = nd.concat(fake_img1T, fake_img2T, fake_img3T, dim=2)
                visual.visualize(fake_img)
                plt.savefig('outputs/' + expname + '_fakespre_' + str(epoch) +
                            '.png')

                for ep2 in range(1):
                    with autograd.record():
                        #eps = nd.random_normal(loc=0, scale=1, shape=fake_latent.shape, ctx=ctx) #
                        eps2 = nd.tanh(
                            mu
                        )  #+nd.multiply(eps,sigma))#nd.random.uniform( low=-1, high=1, shape=fake_latent.shape, ctx=ctx)
                        rec_output = netDS(netDe(eps2))
                        fake_label = nd.zeros(rec_output.shape, ctx=ctx)
                        errGS = GAN_loss(rec_output, fake_label)
                        errGS.backward()
                    mu -= lr / mu.shape[0] * mu.grad
                images = netDe(mu)
                fake_img1T = nd.concat(images[0], images[1], images[2], dim=1)
                fake_img2T = nd.concat(images[3], images[4], images[5], dim=1)
                fake_img3T = nd.concat(images[6], images[7], images[8], dim=1)
                fake_img = nd.concat(fake_img1T, fake_img2T, fake_img3T, dim=2)
                visual.visualize(fake_img)
                plt.savefig('outputs/' + expname + str(ep2) + '_fakespost_' +
                            str(epoch) + '.png')
                eps2 = nd.tanh(
                    mu
                )  #+nd.multiply(eps,sigma))#nd.random.uniform( low=-1, high=1, shape=fake_latent.shape, ctx=ctx)
            with autograd.record():
                # Train with fake image
                # Use image pooling to utilize history imagesi
                output = netD(fake_concat)
                output2 = netD2(fake_latent)
                fake_label = nd.zeros(output.shape, ctx=ctx)
                fake_latent_label = nd.zeros(output2.shape, ctx=ctx)
                noiseshape = (fake_latent.shape[0] / 2, fake_latent.shape[1],
                              fake_latent.shape[2], fake_latent.shape[3])
                #eps2 = nd.random_normal(loc=0, scale=1, shape=noiseshape, ctx=ctx) #
                eps = nd.random.uniform(low=-1,
                                        high=1,
                                        shape=fake_latent.shape,
                                        ctx=ctx)
                #strong_output = netDS(netDe(eps))
                rec_output = netD(netDe(eps))
                errD_fake = GAN_loss(rec_output, fake_label)
                errD_fake2 = GAN_loss(output, fake_label)
                errD2_fake = GAN_loss(output2, fake_latent_label)
                metric.update([
                    fake_label,
                ], [
                    rec_output,
                ])
                metric2.update([
                    fake_latent_label,
                ], [
                    output2,
                ])
                real_concat = nd.concat(real_in, real_out,
                                        dim=1) if append else real_out
                output = netD(real_concat)
                output2 = netD2(real_latent)
                real_label = nd.ones(output.shape, ctx=ctx)
                real_latent_label = nd.ones(output2.shape, ctx=ctx)
                errD_real = GAN_loss(output, real_label)
                errD2_real = GAN_loss(output2, real_latent_label)
                #errD = (errD_real + 0.5*(errD_fake+errD_fake2)) * 0.5
                errD = (errD_real + errD_fake) * 0.5
                errD2 = (errD2_real + errD2_fake) * 0.5
                totalerrD = errD + errD2
                totalerrD.backward()
                metric.update([
                    real_label,
                ], [
                    output,
                ])
                metric2.update([
                    real_latent_label,
                ], [
                    output2,
                ])
            trainerD.step(batch.data[0].shape[0])
            trainerD2.step(batch.data[0].shape[0])
            with autograd.record():
                strong_output = netDS(netDe(eps))
                strong_real = netDS(fake_concat)
                errs1 = GAN_loss(strong_output, fake_label)
                errs2 = GAN_loss(strong_real, real_label)
                metricStrong.update([
                    fake_label,
                ], [
                    strong_output,
                ])
                metricStrong.update([
                    real_label,
                ], [
                    strong_real,
                ])
                strongerr = 0.5 * (errs1 + errs2)
                strongerr.backward()
            trainerSD.step(batch.data[0].shape[0])
            ############################
            # (2) Update G network: maximize log(D(x, G(x, z))) - lambda1 * L1(y, G(x, z))
            ###########################
            with autograd.record():
                sh = fake_latent.shape
                #eps2 = nd.random_normal(loc=0, scale=1, shape=noiseshape, ctx=ctx) #
                #eps = nd.random.uniform( low=-1, high=1, shape=noiseshape, ctx=ctx)
                #if epoch>100:
                #        eps2 = nd.multiply(eps2,sigma)+mu
                #        eps2 = nd.tanh(eps2)
                #else:
                #eps = nd.random.uniform( low=-1, high=1, shape=noiseshape, ctx=ctx)
                #eps2 = nd.concat(eps,eps2,dim=0)
                rec_output = netD(netDe(eps2))
                fake_latent = (netEn(real_in))
                output2 = netD2(fake_latent)
                fake_out = netDe(fake_latent)
                fake_concat = nd.concat(real_in, fake_out,
                                        dim=1) if append else fake_out
                output = netD(fake_concat)
                real_label = nd.ones(output.shape, ctx=ctx)
                real_latent_label = nd.ones(output2.shape, ctx=ctx)
                errG2 = GAN_loss(rec_output, real_label)
                errR = L1_loss(real_out, fake_out) * lambda1
                errG = 10.0 * GAN_loss(output2,
                                       real_latent_label) + errG2 + errR
                errG.backward()
            trainerDe.step(batch.data[0].shape[0])
            trainerEn.step(batch.data[0].shape[0])
            loss_rec_G2.append(nd.mean(errG2).asscalar())
            loss_rec_G.append(
                nd.mean(nd.mean(errG)).asscalar() - nd.mean(errG2).asscalar() -
                nd.mean(errR).asscalar())
            loss_rec_D.append(nd.mean(errD).asscalar())
            loss_rec_R.append(nd.mean(errR).asscalar())
            loss_rec_D2.append(nd.mean(errD2).asscalar())
            _, acc2 = metric2.get()
            name, acc = metric.get()
            acc_rec.append(acc)
            acc2_rec.append(acc2)

            # Print log infomation every ten batches
            if iter % 10 == 0:
                _, acc2 = metric2.get()
                name, acc = metric.get()
                _, accStrong = metricStrong.get()
                logging.info('speed: {} samples/s'.format(
                    batch_size / (time.time() - btic)))
                #print(errD)
                logging.info(
                    'discriminator loss = %f, D2 loss = %f, generator loss = %f, G2 loss = %f, SD loss = %f,  D acc = %f , D2 acc = %f, DS acc = %f, reconstruction error= %f  at iter %d epoch %d'
                    % (nd.mean(errD).asscalar(), nd.mean(errD2).asscalar(),
                       nd.mean(errG - errG2 - errR).asscalar(),
                       nd.mean(errG2).asscalar(),
                       nd.mean(strongerr).asscalar(), acc, acc2, accStrong,
                       nd.mean(errR).asscalar(), iter, epoch))
                iter = iter + 1
        btic = time.time()
        name, acc = metric.get()
        _, acc2 = metric2.get()
        tp_file = open(expname + "_trainloss.txt", "a")
        tp_file.write(
            str(nd.mean(errG2).asscalar()) + " " + str(
                nd.mean(nd.mean(errG)).asscalar() - nd.mean(errG2).asscalar() -
                nd.mean(errR).asscalar()) + " " +
            str(nd.mean(errD).asscalar()) + " " +
            str(nd.mean(errD2).asscalar()) + " " +
            str(nd.mean(errR).asscalar()) + " " + str(acc) + " " + str(acc2) +
            "\n")
        tp_file.close()
        metric.reset()
        metric2.reset()
        train_data.reset()
        metricStrong.reset()

        logging.info('\nbinary training acc at epoch %d: %s=%f' %
                     (epoch, name, acc))
        logging.info('time: %f' % (time.time() - tic))
        if epoch % 5 == 0:  # and epoch>0:
            text_file = open(expname + "_validtest.txt", "a")
            filename = "checkpoints/" + expname + "_" + str(
                epoch) + "_D.params"
            netD.save_params(filename)
            filename = "checkpoints/" + expname + "_" + str(
                epoch) + "_D2.params"
            netD2.save_params(filename)
            filename = "checkpoints/" + expname + "_" + str(
                epoch) + "_En.params"
            netEn.save_params(filename)
            filename = "checkpoints/" + expname + "_" + str(
                epoch) + "_De.params"
            netDe.save_params(filename)
            filename = "checkpoints/" + expname + "_" + str(
                epoch) + "_SD.params"
            netDS.save_params(filename)
            fake_img1 = nd.concat(real_in[0], real_out[0], fake_out[0], dim=1)
            fake_img2 = nd.concat(real_in[1], real_out[1], fake_out[1], dim=1)
            fake_img3 = nd.concat(real_in[2], real_out[2], fake_out[2], dim=1)
            fake_img4 = nd.concat(real_in[3], real_out[3], fake_out[3], dim=1)
            val_data.reset()
            text_file = open(expname + "_validtest.txt", "a")
            for vbatch in val_data:

                real_in = vbatch.data[0].as_in_context(ctx)
                real_out = vbatch.data[1].as_in_context(ctx)
                fake_latent = netEn(real_in)
                y = netDe(fake_latent)
                fake_out = y
                metricMSE.update([
                    fake_out,
                ], [
                    real_out,
                ])
            _, acc2 = metricMSE.get()
            text_file.write("%s %s %s\n" %
                            (str(epoch), nd.mean(errR).asscalar(), str(acc2)))
            metricMSE.reset()
            images = netDe(eps2)
            fake_img1T = nd.concat(images[0], images[1], images[2], dim=1)
            fake_img2T = nd.concat(images[3], images[4], images[5], dim=1)
            fake_img3T = nd.concat(images[6], images[7], images[8], dim=1)
            fake_img = nd.concat(fake_img1T, fake_img2T, fake_img3T, dim=2)
            visual.visualize(fake_img)
            plt.savefig('outputs/' + expname + '_fakes_' + str(epoch) + '.png')
            text_file.close()
    return ([
        loss_rec_D, loss_rec_G, loss_rec_R, acc_rec, loss_rec_D2, loss_rec_G2,
        acc2_rec
    ])
示例#17
0
文件: mish.py 项目: zlapp/Mish-1
 def hybrid_forward(self, x):        
     return x * F.tanh(F.activation(data = x, act_type = 'softrelu'))
示例#18
0
文件: rnn.py 项目: ylxdzsw/xi-rnn
def rnn(x, h, W, b):
    return nd.tanh(nd.dot(nd.concat(x, h, dim=1), W) + b)
示例#19
0
def sigmoid(x):
    return .5 * (nd.tanh(.5 * x) + 1)
示例#20
0
def train(cep,
          pool_size,
          epochs,
          train_data,
          val_data,
          ctx,
          netEn,
          netDe,
          netD,
          netD2,
          netDS,
          trainerEn,
          trainerDe,
          trainerD,
          trainerD2,
          trainerSD,
          lambda1,
          batch_size,
          expname,
          append=True,
          useAE=False):
    tp_file = open(expname + "_trainloss.txt", "w")
    tp_file.close()
    text_file = open(expname + "_validtest.txt", "w")
    text_file.close()
    #netGT, netDT, _, _ = set_test_network(opt.depth, ctx, opt.lr, opt.beta1,opt.ndf,  opt.ngf, opt.append)
    GAN_loss = gluon.loss.SigmoidBinaryCrossEntropyLoss()
    L1_loss = gluon.loss.L2Loss()
    image_pool = imagePool.ImagePool(pool_size)
    metric = mx.metric.CustomMetric(facc)
    metric2 = mx.metric.CustomMetric(facc)
    metricStrong = mx.metric.CustomMetric(facc)
    metricMSE = mx.metric.MSE()
    loss_rec_G = []
    loss_rec_D = []
    loss_rec_R = []
    acc_rec = []
    acc2_rec = []
    loss_rec_D2 = []
    loss_rec_G2 = []
    lr = 2.0 * 512
    stamp = datetime.now().strftime('%Y_%m_%d-%H_%M')
    logging.basicConfig(level=logging.DEBUG)
    if cep == -1:
        cep = 0
    else:
        netEn.load_params('checkpoints/' + opt.expname + '_' + str(cep) +
                          '_En.params',
                          ctx=ctx)
        netDe.load_params('checkpoints/' + opt.expname + '_' + str(cep) +
                          '_De.params',
                          ctx=ctx)
        netD.load_params('checkpoints/' + opt.expname + '_' + str(cep) +
                         '_D.params',
                         ctx=ctx)
        netD2.load_params('checkpoints/' + opt.expname + '_' + str(cep) +
                          '_D2.params',
                          ctx=ctx)
        netDS.load_params('checkpoints/' + opt.expname + '_' + str(cep) +
                          '_SD.params',
                          ctx=ctx)
    iter = 0
    for epoch in range(cep + 1, epochs):

        tic = time.time()
        btic = time.time()
        train_data.reset()
        #print('learning rate : '+str(trainerD.learning_rate ))
        for batch in train_data:
            ############################
            # (1) Update D network: maximize log(D(x, y)) + log(1 - D(x, G(x, z)))
            ###########################
            if ctx == mx.cpu():
                ct = mx.cpu()
            else:
                ct = mx.gpu()
            real_in = batch.data[0]  #.as_in_context(ctx)
            real_out = batch.data[1]  #.as_in_context(ctx)
            if iter == 0:
                latent_shape = (batch_size, 512, 1, 1)  #code.shape
                out_l_shape = (batch_size, 1, 1, 1)  #netD2((code)).shape
                out_i_shape = (batch_size, 1, 1, 1)  #netD(netDe(code)).shape
                out_s_shape = (batch_size, 1, 1, 1)  #netSD(netDe(code)).shape
            real_in = gluon.utils.split_and_load(real_in, ctx)
            real_out = gluon.utils.split_and_load(real_out, ctx)
            fake_latent = [netEn(r) for r in real_in]
            real_latent = nd.random.uniform(low=-1, high=1, shape=latent_shape)
            real_latent = gluon.utils.split_and_load(real_latent, ctx)
            fake_out = [netDe(f) for f in fake_latent]
            fake_concat = nd.concat(real_in, fake_out,
                                    dim=1) if append else fake_out
            eps2 = nd.random.uniform(low=-1,
                                     high=1,
                                     shape=latent_shape,
                                     ctx=ct)
            eps2 = gluon.utils.split_and_load(eps2, ctx)
            if epoch > 150:  # (1/float(batch_size))*512*150:# and epoch%10==0:
                print('Mining..')
                mu = nd.random.uniform(low=-1,
                                       high=1,
                                       shape=latent_shape,
                                       ctx=ct)
                #isigma = nd.ones((batch_size,64,1,1),ctx=ctx)*0.000001
                mu.attach_grad()
                #sigma.attach_grad()
                images = netDe(mu)
                fake_img1T = nd.concat(images[0], images[1], images[2], dim=1)
                fake_img2T = nd.concat(images[3], images[4], images[5], dim=1)
                fake_img3T = nd.concat(images[6], images[7], images[8], dim=1)
                fake_img = nd.concat(fake_img1T, fake_img2T, fake_img3T, dim=2)
                visual.visualize(fake_img)
                plt.savefig('outputs/' + expname + '_fakespre_' + str(epoch) +
                            '.png')
                eps2 = gluon.utils.split_and_load(mu, ctx)
                for e in eps2:
                    e.attach_grad()
                for ep2 in range(1):
                    with autograd.record():
                        #eps = nd.random_normal(loc=0, scale=1, shape=fake_latent.shape, ctx=ctx) #
                        #eps2 = gluon.utils.split_and_load(nd.tanh(mu),ctx) #+nd.multiply(eps,sigma))#nd.random.uniform( low=-1, high=1, shape=fake_latent.shape, ctx=ctx)
                        rec_output = [netDS(netDe(e)) for e in eps2]
                        fake_label = gluon.utils.split_and_load(
                            nd.zeros(out_s_shape), ctx)
                        errGS = [
                            GAN_loss(r, f)
                            for r, f in zip(rec_output, fake_label)
                        ]
                        for e in errGS:
                            e.backward()
                    for idx, _ in enumerate(eps2):
                        eps2[idx] = nd.tanh(eps2[idx] -
                                            lr / eps2[idx].shape[0] *
                                            eps2[idx].grad)
                images = netDe((eps2[0]))
                fake_img1T = nd.concat(images[0], images[1], images[2], dim=1)
                fake_img2T = nd.concat(images[3], images[4], images[5], dim=1)
                fake_img3T = nd.concat(images[6], images[7], images[8], dim=1)
                fake_img = nd.concat(fake_img1T, fake_img2T, fake_img3T, dim=2)
                visual.visualize(fake_img)
                plt.savefig('outputs/' + expname + str(ep2) + '_fakespost_' +
                            str(epoch) + '.png')
                #eps2 = nd.tanh(mu)#+nd.multiply(eps,sigma))#nd.random.uniform( low=-1, high=1, shape=fake_latent.shape, ctx=ctx)

            with autograd.record():
                #eps2 = gluon.utils.split_and_load(eps2,ctx)
                # Train with fake image
                # Use image pooling to utilize history imagesi
                output = [netD(f) for f in fake_concat]
                output2 = [netD2(f) for f in fake_latent]
                fake_label = nd.zeros(out_i_shape)
                fake_label = gluon.utils.split_and_load(fake_label, ctx)
                fake_latent_label = nd.zeros(out_l_shape)
                fake_latent_label = gluon.utils.split_and_load(
                    fake_latent_label, ctx)
                eps = gluon.utils.split_and_load(
                    nd.random.uniform(low=-1, high=1, shape=latent_shape), ctx)
                rec_output = [netD(netDe(e)) for e in eps]
                errD_fake = [
                    GAN_loss(r, f) for r, f in zip(rec_output, fake_label)
                ]
                errD_fake2 = [
                    GAN_loss(o, f) for o, f in zip(output, fake_label)
                ]
                errD2_fake = [
                    GAN_loss(o, f) for o, f in zip(output2, fake_latent_label)
                ]
                for f, o in zip(fake_label, rec_output):
                    metric.update([
                        f,
                    ], [
                        o,
                    ])
                for f, o in zip(fake_latent_label, output2):
                    metric2.update([
                        f,
                    ], [
                        o,
                    ])
                real_concat = nd.concat(real_in, real_out,
                                        dim=1) if append else real_out
                output = [netD(r) for r in real_concat]
                output2 = [netD2(r) for r in real_latent]
                real_label = gluon.utils.split_and_load(
                    nd.ones(out_i_shape), ctx)
                real_latent_label = gluon.utils.split_and_load(
                    nd.ones(out_l_shape), ctx)
                errD_real = [
                    GAN_loss(o, r) for o, r in zip(output, real_label)
                ]
                errD2_real = [
                    GAN_loss(o, r) for o, r in zip(output2, real_latent_label)
                ]
                for e1, e2, e4, e5 in zip(errD_real, errD_fake, errD2_real,
                                          errD2_fake):
                    err = (e1 + e2) * 0.5 + (e5 + e4) * 0.5
                    err.backward()
                for f, o in zip(real_label, output):
                    metric.update([
                        f,
                    ], [
                        o,
                    ])
                for f, o in zip(real_latent_label, output2):
                    metric2.update([
                        f,
                    ], [
                        o,
                    ])
            trainerD.step(batch.data[0].shape[0])
            trainerD2.step(batch.data[0].shape[0])
            nd.waitall()
            with autograd.record():
                strong_output = [netDS(netDe(e)) for e in eps]
                strong_real = [netDS(f) for f in fake_concat]
                errs1 = [
                    GAN_loss(r, f) for r, f in zip(strong_output, fake_label)
                ]
                errs2 = [
                    GAN_loss(r, f) for r, f in zip(strong_real, real_label)
                ]
                for f, s in zip(fake_label, strong_output):
                    metricStrong.update([
                        f,
                    ], [
                        s,
                    ])
                for f, s in zip(real_label, strong_real):
                    metricStrong.update([
                        f,
                    ], [
                        s,
                    ])
                for e1, e2 in zip(errs1, errs2):
                    strongerr = 0.5 * (e1 + e2)
                    strongerr.backward()
            trainerSD.step(batch.data[0].shape[0])
            nd.waitall()
            ############################
            # (2) Update G network: maximize log(D(x, G(x, z))) - lambda1 * L1(y, G(x, z))
            ###########################
            with autograd.record():
                sh = out_l_shape
                #eps2 = nd.random_normal(loc=0, scale=1, shape=noiseshape, ctx=ctx) #
                #eps = nd.random.uniform( low=-1, high=1, shape=noiseshape, ctx=ctx)
                #if epoch>100:
                #        eps2 = nd.multiply(eps2,sigma)+mu
                #        eps2 = nd.tanh(eps2)
                #else:
                #eps = nd.random.uniform( low=-1, high=1, shape=noiseshape, ctx=ctx)
                #eps2 = nd.concat(eps,eps2,dim=0)
                rec_output = [netD(netDe(e)) for e in eps2]
                fake_latent = [(netEn(r)) for r in real_in]
                output2 = [netD2(f) for f in fake_latent]
                fake_out = [netDe(f) for f in fake_latent]
                fake_concat = nd.concat(real_in, fake_out,
                                        dim=1) if append else fake_out
                output = [netD(f) for f in fake_concat]
                real_label = gluon.utils.split_and_load(
                    nd.ones(out_i_shape), ctx)
                real_latent_label = gluon.utils.split_and_load(
                    nd.ones(out_l_shape), ctx)
                errG2 = [
                    GAN_loss(r, f) for r, f in zip(rec_output, real_label)
                ]
                errR = [
                    L1_loss(r, f) * lambda1
                    for r, f in zip(real_out, fake_out)
                ]
                errG = [
                    10 * GAN_loss(r, f)
                    for r, f in zip(output2, real_latent_label)
                ]  # +errG2+errR
                for e1, e2, e3 in zip(errG, errG2, errR):
                    e = e1 + e2 + e3
                    e.backward()
            trainerDe.step(batch.data[0].shape[0])
            trainerEn.step(batch.data[0].shape[0])
            nd.waitall()
            errD = (errD_real[0] + errD_fake[0]) * 0.5
            errD2 = (errD2_real[0] + errD2_fake[0]) * 0.5
            loss_rec_G2.append(nd.mean(errG2[0]).asscalar())
            loss_rec_G.append(
                nd.mean(nd.mean(errG[0])).asscalar() -
                nd.mean(errG2[0]).asscalar() - nd.mean(errR[0]).asscalar())
            loss_rec_D.append(nd.mean(errD[0]).asscalar())
            loss_rec_R.append(nd.mean(errR[0]).asscalar())
            loss_rec_D2.append(nd.mean(errD2[0]).asscalar())
            _, acc2 = metric2.get()
            name, acc = metric.get()
            acc_rec.append(acc)
            acc2_rec.append(acc2)

            # Print log infomation every ten batches
            if iter % 10 == 0:
                _, acc2 = metric2.get()
                name, acc = metric.get()
                _, accStrong = metricStrong.get()
                logging.info('speed: {} samples/s'.format(
                    batch_size / (time.time() - btic)))
                #print(errD)
                #logging.info('discriminator loss = %f, D2 loss = %f, generator loss = %f, G2 loss = %f, SD loss = %f,  D acc = %f , D2 acc = %f, DS acc = %f, reconstruction error= %f  at iter %d epoch %d'
                #   	% (nd.mean(errD[0]).asscalar(),nd.mean(errD2[0]).asscalar(),
                #     	nd.mean(errG[0]-errG2[0]-errR[0]).asscalar(),nd.mean(errG2[0]).asscalar(),nd.mean(strongerr[0]).asscalar() ,acc,acc2,accStrong[0],nd.mean(errR[0]).asscalar() ,iter, epoch))
                iter = iter + 1
        btic = time.time()
        name, acc = metric.get()
        _, acc2 = metric2.get()
        #tp_file = open(expname + "_trainloss.txt", "a")
        #tp_file.write(str(nd.mean(errG2).asscalar()) + " " + str(
        #    nd.mean(nd.mean(errG)).asscalar() - nd.mean(errG2).asscalar() - nd.mean(errR).asscalar()) + " " + str(
        #    nd.mean(errD).asscalar()) + " " + str(nd.mean(errD2).asscalar()) + " " + str(nd.mean(errR).asscalar()) +" "+str(acc) + " " + str(acc2)+"\n")
        #tp_file.close()
        metric.reset()
        metric2.reset()
        train_data.reset()
        metricStrong.reset()

        logging.info('\nbinary training acc at epoch %d: %s=%f' %
                     (epoch, name, acc))
        logging.info('time: %f' % (time.time() - tic))
        if epoch % 2 == 0:  # and epoch>0:
            text_file = open(expname + "_validtest.txt", "a")
            filename = "checkpoints/" + expname + "_" + str(
                epoch) + "_D.params"
            netD.save_parameters(filename)
            filename = "checkpoints/" + expname + "_" + str(
                epoch) + "_D2.params"
            netD2.save_parameters(filename)
            filename = "checkpoints/" + expname + "_" + str(
                epoch) + "_En.params"
            netEn.save_parameters(filename)
            filename = "checkpoints/" + expname + "_" + str(
                epoch) + "_De.params"
            netDe.save_parameters(filename)
            filename = "checkpoints/" + expname + "_" + str(
                epoch) + "_SD.params"
            netDS.save_parameters(filename)
            fake_img1 = nd.concat(real_in[0], real_out[0], fake_out[0], dim=1)
            fake_img2 = nd.concat(real_in[1], real_out[1], fake_out[1], dim=1)
            fake_img3 = nd.concat(real_in[2], real_out[2], fake_out[2], dim=1)
            fake_img4 = nd.concat(real_in[3], real_out[3], fake_out[3], dim=1)
            val_data.reset()
            text_file = open(expname + "_validtest.txt", "a")
            for vbatch in val_data:

                real_in = vbatch.data[0]
                real_out = vbatch.data[1]
                real_in = gluon.utils.split_and_load(real_in, ctx)
                real_out = gluon.utils.split_and_load(real_out, ctx)

                fake_latent = [netEn(r) for r in real_in]
                fake_out = [netDe(f) for f in fake_latent]
                for f, r in zip(fake_out, real_out):
                    metricMSE.update([
                        f,
                    ], [
                        r,
                    ])
            _, acc2 = metricMSE.get()
            toterrR = 0
            for e in errR:
                toterrR += nd.mean(e).asscalar()
            text_file.write("%s %s %s\n" % (str(epoch), toterrR, str(acc2)))
            metricMSE.reset()
    return ([
        loss_rec_D, loss_rec_G, loss_rec_R, acc_rec, loss_rec_D2, loss_rec_G2,
        acc2_rec
    ])
示例#21
0
def trainadnov(opt, train_data, val_data, ctx, networks, datasize):

    netEn = networks[0]
    netDe = networks[1]
    netD = networks[2]
    netD2 = networks[3]
    netDS = networks[4]
    trainerEn = networks[5]
    trainerDe = networks[6]
    trainerD = networks[7]
    trainerD2 = networks[8]
    trainerSD = networks[9]
    cep = opt.continueEpochFrom
    epochs = opt.epochs
    lambda1 = opt.lambda1
    batch_size = opt.batch_size
    expname = opt.expname
    append = opt.append
    text_file = open(expname + "_trainloss.txt", "w")
    text_file.close()
    text_file = open(expname + "_validtest.txt", "w")
    text_file.close()
    GAN_loss = gluon.loss.SigmoidBinaryCrossEntropyLoss()
    L1_loss = gluon.loss.L2Loss()
    metric = mx.metric.CustomMetric(facc)
    metricl = mx.metric.CustomMetric(facc)
    metricStrong = mx.metric.CustomMetric(facc)
    metric2 = mx.metric.MSE()
    metricMSE = mx.metric.MSE()
    loss_rec_G2 = []
    acc2_rec = []
    loss_rec_G = []
    loss_rec_D = []
    loss_rec_R = []
    acc_rec = []
    loss_rec_D2 = []
    stamp = datetime.now().strftime('%Y_%m_%d-%H_%M')
    logging.basicConfig(level=logging.DEBUG)
    lr = 2.0 * batch_size
    logging.basicConfig(level=logging.DEBUG)
    if cep == -1:
        cep = 0
    else:
        netEn.load_params('checkpoints/' + opt.expname + '_' + str(cep) +
                          '_En.params',
                          ctx=ctx)
        netDe.load_params('checkpoints/' + opt.expname + '_' + str(cep) +
                          '_De.params',
                          ctx=ctx)
        netD.load_params('checkpoints/' + opt.expname + '_' + str(cep) +
                         '_D.params',
                         ctx=ctx)
        netD2.load_params('checkpoints/' + opt.expname + '_' + str(cep) +
                          '_D2.params',
                          ctx=ctx)
        netDS.load_params('checkpoints/' + opt.expname + '_' + str(cep) +
                          '_SD.params',
                          ctx=ctx)
    for epoch in range(cep + 1, epochs):
        tic = time.time()
        btic = time.time()
        train_data.reset()
        iter = 0
        counter = 0
        for batch in train_data:
            for i in range(iter):
                batch = train_data.next()  #.data[0]
            ############################
            # (1) Update D network: maximize log(D(x, y)) + log(1 - D(x, G(x, z)))
            ###########################
            real_in = batch.data[0].as_in_context(ctx)
            real_out = batch.data[1].as_in_context(ctx)
            counter += opt.batch_size
            fake_latent = netEn(real_in)
            mu = nd.random.uniform(low=-1,
                                   high=1,
                                   shape=fake_latent.shape,
                                   ctx=ctx)
            real_latent = nd.random.uniform(low=-1,
                                            high=1,
                                            shape=fake_latent.shape,
                                            ctx=ctx)
            fake_out = netDe(fake_latent)
            fake_concat = nd.concat(real_in, fake_out,
                                    dim=1) if append else fake_out
            if epoch > 150:  # negative mining
                mu = nd.random.uniform(low=-1,
                                       high=1,
                                       shape=fake_latent.shape,
                                       ctx=ctx)
                mu.attach_grad()
                for ep2 in range(1):  # doing single gradient step
                    with autograd.record():
                        eps2 = nd.tanh(mu)
                        rec_output = netDS(netDe(eps2))
                        fake_label = nd.zeros(rec_output.shape, ctx=ctx)
                        errGS = GAN_loss(rec_output, fake_label)
                        errGS.backward()
                    mu -= lr / mu.shape[0] * mu.grad  # Update mu with SGD
            eps2 = nd.tanh(mu)
            with autograd.record():
                # Train with fake image
                output = netD(fake_concat)
                output2 = netD2(fake_latent)
                fake_label = nd.zeros(output.shape, ctx=ctx)
                fake_latent_label = nd.zeros(output2.shape, ctx=ctx)
                eps = nd.random.uniform(low=-1,
                                        high=1,
                                        shape=fake_latent.shape,
                                        ctx=ctx)
                rec_output = netD(netDe(eps))
                errD_fake = GAN_loss(rec_output, fake_label)
                errD_fake2 = GAN_loss(output, fake_label)
                errD2_fake = GAN_loss(output2, fake_latent_label)
                metric.update([
                    fake_label,
                ], [
                    rec_output,
                ])
                metric2.update([
                    fake_latent_label,
                ], [
                    output2,
                ])
                real_concat = nd.concat(real_in, real_out,
                                        dim=1) if append else real_out
                output = netD(real_concat)
                output2 = netD2(real_latent)
                real_label = nd.ones(output.shape, ctx=ctx)
                real_latent_label = nd.ones(output2.shape, ctx=ctx)
                errD_real = GAN_loss(output, real_label)
                errD2_real = GAN_loss(output2, real_latent_label)
                errD = (errD_real + errD_fake) * 0.5
                errD2 = (errD2_real + errD2_fake) * 0.5
                totalerrD = errD + errD2
                totalerrD.backward()
            metric.update([
                real_label,
            ], [
                output,
            ])
            metric2.update([
                real_latent_label,
            ], [
                output2,
            ])
            trainerD.step(batch.data[0].shape[0])
            trainerD2.step(batch.data[0].shape[0])
            with autograd.record():
                # Train classifier
                strong_output = netDS(netDe(eps))
                strong_real = netDS(fake_concat)
                errs1 = GAN_loss(strong_output, fake_label)
                errs2 = GAN_loss(strong_real, real_label)
                metricStrong.update([
                    fake_label,
                ], [
                    strong_output,
                ])
                metricStrong.update([
                    real_label,
                ], [
                    strong_real,
                ])
                strongerr = 0.5 * (errs1 + errs2)
                strongerr.backward()
            trainerSD.step(batch.data[0].shape[0])
            ############################
            # (2) Update G network: maximize log(D(x, G(x, z))) - lambda1 * L1(y, G(x, z))
            ###########################
            with autograd.record():
                rec_output = netD(netDe(eps2))
                fake_latent = (netEn(real_in))
                output2 = netD2(fake_latent)
                fake_out = netDe(fake_latent)
                fake_concat = nd.concat(real_in, fake_out,
                                        dim=1) if append else fake_out
                output = netD(fake_concat)
                real_label = nd.ones(output.shape, ctx=ctx)
                real_latent_label = nd.ones(output2.shape, ctx=ctx)
                errG2 = GAN_loss(rec_output, real_label)
                errR = L1_loss(real_out, fake_out) * lambda1
                errG = 10.0 * GAN_loss(output2,
                                       real_latent_label) + errG2 + errR
                errG.backward()
            trainerDe.step(batch.data[0].shape[0])
            trainerEn.step(batch.data[0].shape[0])
            loss_rec_G2.append(nd.mean(errG2).asscalar())
            loss_rec_G.append(
                nd.mean(nd.mean(errG)).asscalar() - nd.mean(errG2).asscalar() -
                nd.mean(errR).asscalar())
            loss_rec_D.append(nd.mean(errD).asscalar())
            loss_rec_R.append(nd.mean(errR).asscalar())
            loss_rec_D2.append(nd.mean(errD2).asscalar())
            _, acc2 = metric2.get()
            name, acc = metric.get()
            acc_rec.append(acc)
            acc2_rec.append(acc2)

            # Print log infomation every ten batches
            if iter % 10 == 0:
                _, acc2 = metric2.get()
                name, acc = metric.get()
            _, accStrong = metricStrong.get()
            logging.info('speed: {} samples/s'.format(batch_size /
                                                      (time.time() - btic)))
            logging.info(
                'discriminator loss = %f, D2 loss = %f, generator loss = %f, G2 loss = %f, SD loss = %f,  D acc = %f , D2 acc = %f, DS acc = %f, reconstruction error= %f  at iter %d epoch %d'
                %
                (nd.mean(errD).asscalar(), nd.mean(errD2).asscalar(),
                 nd.mean(errG - errG2 - errR).asscalar(),
                 nd.mean(errG2).asscalar(), nd.mean(strongerr).asscalar(), acc,
                 acc2, accStrong, nd.mean(errR).asscalar(), iter, epoch))
            iter = iter + 1
            btic = time.time()
            name, acc = metric.get()
            _, acc2 = metric2.get()
            metric.reset()
            metric2.reset()
            train_data.reset()
            metricStrong.reset()

            logging.info('\nbinary training acc at epoch %d: %s=%f' %
                         (epoch, name, acc))
            logging.info('time: %f' % (time.time() - tic))
            if epoch % 5 == 0:
                filename = "checkpoints/" + expname + "_" + str(
                    epoch) + "_D.params"
                netD.save_parameters(filename)
                filename = "checkpoints/" + expname + "_" + str(
                    epoch) + "_D2.params"
                netD2.save_parameters(filename)
                filename = "checkpoints/" + expname + "_" + str(
                    epoch) + "_En.params"
                netEn.save_parameters(filename)
                filename = "checkpoints/" + expname + "_" + str(
                    epoch) + "_De.params"
                netDe.save_parameters(filename)
                filename = "checkpoints/" + expname + "_" + str(
                    epoch) + "_SD.params"
                netDS.save_parameters(filename)
                val_data.reset()
                text_file = open(expname + "_validtest.txt", "a")
                for vbatch in val_data:
                    real_in = vbatch.data[0].as_in_context(ctx)
                    real_out = vbatch.data[1].as_in_context(ctx)
                    fake_latent = netEn(real_in)
                    y = netDe(fake_latent)
                    fake_out = y
                    metricMSE.update([
                        fake_out,
                    ], [
                        real_out,
                    ])
                _, acc2 = metricMSE.get()
                text_file.write(
                    "%s %s %s %s\n" % (str(epoch), nd.mean(errR).asscalar(),
                                       str(acc2), str(accStrong)))
                metricMSE.reset()
            if counter > datasize:
                break

    return [
        loss_rec_D, loss_rec_G, loss_rec_R, acc_rec, loss_rec_D2, loss_rec_G2,
        acc2_rec
    ]
		def onelayer(self, x, layer):
			xx = F.tanh(layer[0](x))
			#xx = nn.HybridLambda('tanh')(layer[0](x))
 
			return layer[1](xx)
示例#23
0
文件: gru.py 项目: ylxdzsw/xi-rnn
def gru(x, h, Wxr, Wxz, Whr, Whz, Wxh, Whh, br, bz, bh):
    r = nd.sigmoid(nd.dot(x, Wxr) + nd.dot(h, Whr) + br)
    z = nd.sigmoid(nd.dot(x, Wxz) + nd.dot(h, Whz) + bz)
    h̃ = nd.tanh(nd.dot(x, Wxh) + r * nd.dot(h, Whh) + bh)
    return z * h + (1 - z) * h̃
		def oneforward(self, x, layer):
			return F.tanh(layer[0](x))
		def manifold(self, x):
			n_layer = len(self.layers)
			for i in range(n_layer-1):
				x = F.tanh(self.layers[i][0](x))
			return self.layers[n_layer-1][0](x)