def view_classify(img: NDArray, ps: NDArray, version="MNIST"):
    ''' Function for viewing an image and it's predicted classes.
    '''
    ps = ps.asnumpy().squeeze()

    fig, (ax1, ax2) = plt.subplots(figsize=(6, 9), ncols=2)
    ax1.imshow(img.asnumpy().squeeze())
    ax1.axis('off')
    ax2.barh(np.arange(10), ps)
    ax2.set_aspect(0.1)
    ax2.set_yticks(np.arange(10))
    if version == "MNIST":
        ax2.set_yticklabels(np.arange(10))
    ax2.set_title('Class Probability')
    ax2.set_xlim(0, 1.1)

    plt.tight_layout()
def view_recon(img: NDArray, recon):
    ''' Function for displaying an image (as a PyTorch Tensor) and its
        reconstruction also a PyTorch Tensor
    '''

    fig, axes = plt.subplots(ncols=2, sharex=True, sharey=True)
    axes[0].imshow(img.asnumpy().squeeze())
    axes[1].imshow(recon.asnumpy().squeeze())
    for ax in axes:
        ax.axis('off')
        ax.set_adjustable('box-forced')
示例#3
0
 def stat_helper(name, array):
     """wrapper for executor callback"""
     import ctypes
     from mxnet.ndarray import NDArray
     from mxnet.base import NDArrayHandle, py_str
     array = ctypes.cast(array, NDArrayHandle)
     array = NDArray(array, writable=False)
     array.wait_to_read()
     elapsed = float(time.time()-stat_helper.start_time)*1000
     # if elapsed>0.:
     #     print (name, array.shape, ('%.1fms' % (elapsed,)))
     # stat_helper.start_time=time.time()
     array = array.asnumpy()
     print(name, array.shape, np.average(array), np.std(array), ('%.1fms' % (float(time.time()-stat_helper.start_time)*1000)))
     stat_helper.internal_shapes.append((name,array.shape))