示例#1
0
def test_deeplab(ctx):
    test_data = get_data("val", DATA_DIR, LIST_DIR, len(ctx))
    ctx = [mx.gpu(int(i)) for i in args.gpu.split(',')]

    sym_instance = eval(symbol_str)()
    # infer shape
    val_provide_data = [[("data", (1, 3, tile_height, tile_width))]]
    val_provide_label = [[("softmax_label", (1, 1, tile_height, tile_width))]]
    data_shape_dict = {
        'data': (1, 3, tile_height, tile_width),
        'softmax_label': (1, 1, tile_height, tile_width)
    }
    eval_sym = sym_instance.get_symbol(NUM_CLASSES, is_train=False)
    sym_instance.infer_shape(data_shape_dict)

    arg_params, aux_params = load_init_param(args.load, process=True)

    sym_instance.check_parameter_shapes(arg_params,
                                        aux_params,
                                        data_shape_dict,
                                        is_train=False)
    data_names = ['data']
    label_names = ['softmax_label']

    # create predictor
    predictor = Predictor(eval_sym,
                          data_names,
                          label_names,
                          context=ctx,
                          provide_data=val_provide_data,
                          provide_label=val_provide_label,
                          arg_params=arg_params,
                          aux_params=aux_params)

    if args.vis:
        from mxnetgo.myutils.fs import mkdir_p
        vis_dir = os.path.join(logger.get_logger_dir(), "vis")
        mkdir_p(vis_dir)
    stats = MIoUStatistics(NUM_CLASSES)
    test_data.reset_state()
    nbatch = 0
    for data, label in tqdm(test_data.get_data()):
        output_all = predict_scaler(data,
                                    predictor,
                                    scales=[0.9, 1.0, 1.1],
                                    classes=NUM_CLASSES,
                                    tile_size=(tile_height, tile_width),
                                    is_densecrf=False,
                                    nbatch=nbatch,
                                    val_provide_data=val_provide_data,
                                    val_provide_label=val_provide_label)
        output_all = np.argmax(output_all, axis=0)
        label = np.squeeze(label)
        if args.vis:
            cv2.imwrite(os.path.join(vis_dir, "{}.jpg".format(nbatch)),
                        visualize_label(output_all))
        stats.feed(output_all, label)  # very time-consuming
        nbatch += 1
    logger.info("mIoU: {}, meanAcc: {}, acc: {} ".format(
        stats.mIoU, stats.mean_accuracy, stats.accuracy))
示例#2
0
def proceed_test():
    ds = PascalVOC12(TEST_DATA_DIR, LIST_DIR, "test", shuffle=False)
    imagelist = ds.imglist

    def f(ds):
        image = ds
        m = np.array([104, 116, 122])
        const_arr = np.resize(m, (1, 1, 3))  # NCHW
        image = image - const_arr
        return image

    ds = MapData(ds, f)
    ds = BatchData(ds, 1)
    ctx = [mx.gpu(int(i)) for i in args.gpu.split(',')]

    sym_instance = resnet101_deeplab_new()
    # infer shape
    val_provide_data = [[("data", (1, 3, tile_height, tile_width))]]
    val_provide_label = [[("softmax_label", (1, 1, tile_height, tile_width))]]
    data_shape_dict = {
        'data': (1, 3, tile_height, tile_width),
        'softmax_label': (1, 1, tile_height, tile_width)
    }
    eval_sym = sym_instance.get_symbol(NUM_CLASSES,
                                       is_train=False,
                                       use_global_stats=True)
    sym_instance.infer_shape(data_shape_dict)

    arg_params, aux_params = load_init_param(args.load, process=True)
    sym_instance.check_parameter_shapes(arg_params,
                                        aux_params,
                                        data_shape_dict,
                                        is_train=False)
    data_names = ['data']
    label_names = ['softmax_label']

    # create predictor
    predictor = Predictor(eval_sym,
                          data_names,
                          label_names,
                          context=ctx,
                          provide_data=val_provide_data,
                          provide_label=val_provide_label,
                          arg_params=arg_params,
                          aux_params=aux_params)

    from mxnetgo.myutils.fs import mkdir_p
    vis_dir = "deeplabv2_4gpu_test_result"
    check_dir = os.path.join(vis_dir, "check")
    import shutil
    shutil.rmtree(vis_dir, ignore_errors=True)
    mkdir_p(check_dir)

    _itr = ds.get_data()
    nbatch = 0
    for i in tqdm(range(len(imagelist))):
        data = next(_itr)
        l = imagelist[i]
        filename = os.path.basename(l).rsplit(".", 1)[0]
        print filename
        output_all = predict_scaler(data,
                                    predictor,
                                    scales=[0.5, 0.75, 1.0, 1.25, 1.5],
                                    classes=NUM_CLASSES,
                                    tile_size=(tile_height, tile_width),
                                    is_densecrf=False,
                                    nbatch=nbatch,
                                    val_provide_data=val_provide_data,
                                    val_provide_label=val_provide_label)
        output_all = np.argmax(output_all, axis=0).astype(np.uint8)
        result = output_all[:, :, None]
        cv2.imwrite(os.path.join(vis_dir, "{}.png".format(filename)), result)
        cv2.imwrite(
            os.path.join(check_dir, "{}.png".format(filename)),
            np.concatenate((data[0][0], visualize_label(output_all)), axis=1))
        nbatch += 1
示例#3
0
def proceed_validation(ctx):
    #logger.auto_set_dir()
    test_data = get_data("val", DATA_DIR, LIST_DIR, len(ctx))
    ctx = [mx.gpu(int(i)) for i in args.gpu.split(',')]

    sym_instance = resnet101_deeplab_new()
    # infer shape
    val_provide_data = [[("data", (1, 3, tile_height, tile_width))]]
    val_provide_label = [[("softmax_label", (1, 1, tile_height, tile_width))]]
    data_shape_dict = {
        'data': (1, 3, tile_height, tile_width),
        'softmax_label': (1, 1, tile_height, tile_width)
    }
    eval_sym = sym_instance.get_symbol(NUM_CLASSES,
                                       is_train=False,
                                       use_global_stats=True)
    sym_instance.infer_shape(data_shape_dict)

    arg_params, aux_params = load_init_param(args.load, process=True)

    sym_instance.check_parameter_shapes(arg_params,
                                        aux_params,
                                        data_shape_dict,
                                        is_train=False)
    data_names = ['data']
    label_names = ['softmax_label']

    # create predictor
    predictor = Predictor(eval_sym,
                          data_names,
                          label_names,
                          context=ctx,
                          provide_data=val_provide_data,
                          provide_label=val_provide_label,
                          arg_params=arg_params,
                          aux_params=aux_params)

    if args.vis:
        from mxnetgo.myutils.fs import mkdir_p
        vis_dir = os.path.join("fuck_vis")
        mkdir_p(vis_dir)
    stats = MIoUStatistics(NUM_CLASSES)
    test_data.reset_state()
    nbatch = 0
    for data, label in tqdm(test_data.get_data()):
        output_all = predict_scaler(data,
                                    predictor,
                                    scales=[0.5, 0.75, 1.0, 1.25, 1.5],
                                    classes=NUM_CLASSES,
                                    tile_size=(tile_height, tile_width),
                                    is_densecrf=False,
                                    nbatch=nbatch,
                                    val_provide_data=val_provide_data,
                                    val_provide_label=val_provide_label)
        output_all = np.argmax(output_all, axis=0)
        label = np.squeeze(label)
        if args.vis:
            m = np.array([104, 116, 122])
            const_arr = np.resize(m, (1, 1, 3))  # NCHW
            origin_img = data[0] + const_arr
            cv2.imwrite(
                os.path.join(vis_dir, "{}.jpg".format(nbatch)),
                np.concatenate((
                    origin_img,
                    visualize_label(label),
                    np.dstack((label, label, label)),
                    visualize_label(output_all),
                ),
                               axis=1))

        stats.feed(output_all, label)  # very time-consuming
        nbatch += 1
    logger.info("mIoU: {}, meanAcc: {}, acc: {} ".format(
        stats.mIoU, stats.mean_accuracy, stats.accuracy))
示例#4
0
    # create predictor
    predictor = Predictor(eval_sym,
                          data_names,
                          label_names,
                          context=ctx,
                          provide_data=val_provide_data,
                          provide_label=val_provide_label,
                          arg_params=arg_params,
                          aux_params=aux_params)

    if args.vis:
        from mxnetgo.myutils.fs import mkdir_p
        vis_dir = os.path.join(logger.get_logger_dir(), "vis")
        logger.info(" vis_dir: {}".format(vis_dir))
        mkdir_p(vis_dir)

    # load demo data
    image_names = [
        'frankfurt_000001_073088_leftImg8bit.png',
        'lindau_000024_000019_leftImg8bit.png'
    ]
    im = cv2.imread('demo/' + image_names[0],
                    cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
    im = im[None, :, :, :].astype('float32')  # extend one dimension
    output_all = predict_scaler(im,
                                predictor,
                                scales=[1.0],
                                classes=config.dataset.NUM_CLASSES,
                                tile_size=(config.TEST.tile_height,
                                           config.TEST.tile_width),