import cv2 as cv import numpy as np import pause #My fucntions import my_functions directory=r'D:\learning\Semesters\Semester 8\Image_Processing\Project\Chess_board_sampels' imges= my_functions.load_images_from_source(directory,2) for i in range(len(imges)): print("Chess_image_"+str(i+1)) org =my_functions.resize_image(imges[i],10) org_2 = org img=cv.cvtColor(org,cv.COLOR_BGR2GRAY) my_functions.open_in_location(img,"Chess_image_"+str(i+1),-1347,-165) canny= cv.Canny(img, 80, 150) #canny_2=canny blur = cv.GaussianBlur(img, (5, 5), 3) my_functions.open_in_location(blur,'Gaussian Blur '+str(i+1),-905,-165) thrsh = cv.adaptiveThreshold(blur, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY , 11,2) #_, img = cv.threshold(img, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU) contours, hierarchy = cv.findContours(thrsh, mode = cv.RETR_TREE, method = cv.CHAIN_APPROX_NONE)
import cv2 as cv import numpy as np # My fucntions import my_functions THRESHOLDING_window = 11 number_of_images_in_source = 5 source = r'D:\learning\Semesters\Semester 8\Image_Processing\Project\Chess_board_sampels_2' directory = r'D:\learning\Semesters\Semester 8\Image_Processing\Project\all_cropped' frame_BGR_original = my_functions.load_images_from_source( source, number_of_images_in_source - 1) for c in range(number_of_images_in_source): frame_BGR_resized = my_functions.resize_image(frame_BGR_original[c], 10) frame_GRAY = cv.cvtColor(frame_BGR_resized, cv.COLOR_BGR2GRAY) frame_GRAY_blured = cv.GaussianBlur(frame_GRAY, (5, 5), 0) frame_THRESHOLDED = cv.adaptiveThreshold(frame_GRAY_blured, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY_INV, THRESHOLDING_window, 2) contours, hierarchy = cv.findContours(frame_THRESHOLDED, mode=cv.RETR_TREE, method=cv.CHAIN_APPROX_NONE) largest_contour_index = my_functions.get_contour_max_area(contours)[0] # only print if interested # print(largest_contour_index)
import cv2 as cv import numpy as np # My fucntions import my_functions source = r'D:\learning\Semesters\Semester 8\Image_Processing\Project\Chess_board_sampels_2' directory = r'D:\learning\Semesters\Semester 8\Image_Processing\Project\all_cropped' c = 0 frame_BGR_original = my_functions.load_images_from_source(source, 3) while 1: frame_BGR_resized = my_functions.resize_image(frame_BGR_original[c], 10) cv.imshow("blur", frame_BGR_resized) cv.waitKey() cv.destroyAllWindows() frame_GRAY = cv.cvtColor(frame_BGR_resized, cv.COLOR_BGR2GRAY) frame_GRAY_blured = cv.GaussianBlur(frame_GRAY, (5, 5), 0) th = cv.adaptiveThreshold(frame_GRAY_blured, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY_INV, 11, 2) GRAY_corners = cv.goodFeaturesToTrack(frame_GRAY, 100, 0.4, 5) corners_array = np.int0(GRAY_corners) #Display the corners found int he image for i in corners_array: x, y = i.ravel()