示例#1
0
文件: main.py 项目: microsoft/AutoML
def validate(args, config, data_loader, model, num_classes=1000):
    criterion = torch.nn.CrossEntropyLoss()
    model.eval()

    batch_time = AverageMeter()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()

    end = time.time()
    for idx, (images, target) in enumerate(data_loader):
        images = images.cuda(non_blocking=True)
        target = target.cuda(non_blocking=True)

        # compute output
        with torch.cuda.amp.autocast(enabled=config.AMP_ENABLE):
            output = model(images)
        if num_classes == 1000:
            output_num_classes = output.size(-1)
            if output_num_classes == 21841:
                output = remap_layer_22kto1k(output)

        # measure accuracy and record loss
        loss = criterion(output, target)
        acc1, acc5 = accuracy(output, target, topk=(1, 5))

        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if idx % config.PRINT_FREQ == 0:
            memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
            logger.info(f'Test: [{idx}/{len(data_loader)}]\t'
                        f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                        f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
                        f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
                        f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t'
                        f'Mem {memory_used:.0f}MB')

    acc1_meter.sync()
    acc5_meter.sync()
    logger.info(
        f' The number of validation samples is {int(acc1_meter.count)}')
    logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}')
    return acc1_meter.avg, acc5_meter.avg, loss_meter.avg
示例#2
0
def validate(config, data_loader, model, logger):

    criterion = torch.nn.CrossEntropyLoss()
    model.eval()

    batch_time = AverageMeter()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()

    end = time.time()
    for idx, (images, target) in enumerate(data_loader):
        images = images.cuda(non_blocking=True)
        target = target.cuda(non_blocking=True)

        output = model(images)

        # measure accuracy and record loss
        loss = criterion(output, target)
        acc1, acc5 = accuracy(output, target, topk=(1, 5))

        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if idx % config.PRINT_FREQ == 0:
            memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
            logger.info(f'Test: [{idx}/{len(data_loader)}]\t'
                        f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                        f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
                        f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
                        f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t'
                        f'Mem {memory_used:.0f}MB')

    loss_meter.sync()
    acc1_meter.sync()
    acc5_meter.sync()

    logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}')
    return acc1_meter.avg, acc5_meter.avg, loss_meter.avg