示例#1
0
# Check for GPU availability:
device = my_models.device_gpu_cpu()
print('using device:', device)

dtype = torch.float32  # we will be using float

# Constant to control how frequently we print train loss
print_every = 100

train = True
test = True
model = None

if train:
    # Create models:
    model = my_models.model_2()
    my_models.test_model_size(model, dtype)  # test model size output:

    optimizer = optim.Adadelta(model.parameters())

    # Train model:
    model, loss_data = my_models.train_model(model,
                                             optimizer,
                                             train_loader,
                                             val_loader,
                                             device,
                                             dtype,
                                             epoches=2)

    # Save model to file:
    torch.save(model.state_dict(), MODEL_PATH + MODEL_NAME)
示例#2
0
# Check for GPU availability:
device = my_models.device_gpu_cpu()
print('using device:', device)

dtype = torch.float32  # we will be using float

train = True
train_loops = 20

loss_data = []

if train:
    for tl in range(train_loops):
        # Create models:
        model_1 = my_models.model_2()
        model_2 = my_models.model_2()
        model = (model_1, model_2)
        #my_models.test_model_size(model, dtype)  # test model size output:
        optimizer = optim.Adadelta(model.parameters())

        # Train model:
        model, current_loss_data = my_models.train_model_5(model, optimizer, train_loader, test_loader, device, dtype, epoches=4, print_every=5)
        loss_data.append(current_loss_data)
        # Save model to file:
        #torch.save(model.state_dict(), MODEL_PATH + MODEL_NAME)

        print('Training Loop {}/{} is Finished !'.format(tl + 1, train_loops))
        print()

    # Add test accuracy and save data to file: