示例#1
0
def one_simulation(A,
                   N1=50,
                   N2=50,
                   S1=10,
                   S2=10,
                   eps=0.05,
                   p=0.33,
                   t=1000,
                   NODF=1,
                   dir_name='50-50',
                   rip=1,
                   g=1,
                   flag=False,
                   re=1):
    from one_step_bi import one_step
    from random import randint
    from copy import deepcopy
    import time
    from grad_nestedness import NODF_calc
    start_time = time.time()

    name = repr(NODF) + '-' + repr(eps) + '-' + repr(p) + '-' + repr(
        rip) + '-' + repr(re)
    print('name simulation = ', name)
    NODF = NODF_calc(A)
    print('NODF = ', NODF)
    tau_max1 = int(t / N1)
    print('tau = ', tau_max1)
    v1 = [randint(0, S1 - 1) for x in range(0, N1)]
    n1 = []
    Smax1 = max(v1)
    for i in range(0, Smax1 + 1):
        c1 = v1.count(i)
        n1.append(c1)

    v2 = [randint(0, S2 - 1) for x in range(0, N2)]
    n2 = []
    Smax2 = max(v2)
    for i in range(0, Smax2 + 1):
        c2 = v2.count(i)
        n2.append(c2)

    import my_output as O

    for i in range(1, tau_max1):
        #qui il programma è un po' imparziale, perchè tratta la specie 1 come standard
        for k in range(0, N1):
            (v1, v2, n1, n2) = one_step(N1, N2, v1, v2, n1, n2, A, eps)
            #(v1, v2, n1, n2) = one_step(N1, N2, v1, v2, n1, n2, A, eps, rip, True, dir_name)
        n_1 = deepcopy(n1)
        S1 = len(n_1) - n_1.count(0)
        O.print_list_csv(S1, 'S1_' + name, dir_name, d=1)
        # O.print_list_csv(n_1, 'n1_'+name, dir_name, d = len(n_1))
        n_2 = deepcopy(n2)
        S2 = len(n_2) - n_2.count(0)
        O.print_list_csv(S2, 'S2_' + name, dir_name, d=1)
        #O.print_list_csv(n_2, 'n2_'+name, dir_name, d = len(n_2))

    simulation_t = round((time.time() - start_time) / 60, 2)
    print("Tempo simulazione: {}".format(simulation_t), 'min. \n')
示例#2
0
def N_one_simulation(N1=50,
                     N2=50,
                     S1=10,
                     S2=10,
                     eps=0.05,
                     p=0.33,
                     t=1000,
                     dir_name='50-50',
                     rip=1,
                     g=1,
                     flag=False,
                     re=1,
                     option=0):
    from one_step_bi import one_step
    from random import randint
    from copy import deepcopy
    import time
    start_time = time.time()
    name = repr(eps) + '-' + repr(p) + '-' + repr(rip) + '-' + repr(re)

    from bipartite_graph_matrix import adjacency_matrix_nested, adjacency_matrix_nested2
    if option == 0:  #asymmetric nested / first type
        A = adjacency_matrix_nested(S1, S2, p, dir_name, re, g, flag)
    else:  #balanced nested / second type
        A = adjacency_matrix_nested2(S1, S2, p, dir_name, re, g, flag)
    tau_max1 = int(t / N1)

    v1 = [randint(0, S1 - 1) for x in range(0, N1)]
    n1 = []
    Smax1 = max(v1)
    for i in range(0, Smax1 + 1):
        c1 = v1.count(i)
        n1.append(c1)

    v2 = [randint(0, S2 - 1) for x in range(0, N2)]
    n2 = []
    Smax2 = max(v2)
    for i in range(0, Smax2 + 1):
        c2 = v2.count(i)
        n2.append(c2)

    import my_output as O

    for i in range(1, tau_max1):
        #qui il programma è un po' imparziale, perchè tratta la specie 1 come standard
        for k in range(0, N1):
            (v1, v2, n1, n2) = one_step(N1, N2, v1, v2, n1, n2, A, eps)
            #(v1, v2, n1, n2) = one_step(N1, N2, v1, v2, n1, n2, A, eps, rip, True, dir_name)
        n_1 = deepcopy(n1)
        S1 = len(n_1) - n_1.count(0)
        O.print_list_csv(S1, 'N_S1_' + name, dir_name, d=1)
        O.print_list_csv(n_1, 'N_n1_' + name, dir_name, d=len(n_1))
        n_2 = deepcopy(n2)
        S2 = len(n_2) - n_2.count(0)
        O.print_list_csv(S2, 'N_S2_' + name, dir_name, d=1)
        O.print_list_csv(n_2, 'N_n2_' + name, dir_name, d=len(n_2))

    simulation_t = round((time.time() - start_time) / 60, 2)
    print("Tempo simulazione: {}".format(simulation_t), 'min. \n')
示例#3
0
def adjacency_matrix_rnd(S1 = 10, S2 = 10, p = 0.33, dir_name = 'graph', index = 1, index2 = 1, flag = False):
    import networkx as nx
    from networkx.algorithms import bipartite
    import matplotlib.pyplot as plt
    import os
    from ensure_dir import ensure_dir
    import my_print as my
    import my_output as O
    curr_dir = os.getcwd()
    #print('dir_name = ', dir_name)
    file_path = dir_name+'/prova.txt'
    ensure_dir(file_path)
    directory = os.path.dirname(file_path)
    os.chdir(directory)
    
    G = bipartite.random_graph(S1, S2, p)
    deg = list(G.degree())
    deg1 = deg[:S1]
    deg2 = deg[S1:]
    
    pos = {x:[0,x] for x in range(S1)}
    for j in range(S2):
        pos[S1+j] = [1,j]
    colors = ['r' for i in range(0,S1)]
    for j in range(S2):
        colors.append('b')
    fig, [ax1, ax] = plt.subplots(1,2, figsize = (9,4))
    ax1.set_title('Interazioni mutualistiche casuali')
    ax1.set_axis_off()
    ax1.set_autoscale_on(True)
    nx.draw_networkx(G, pos = pos, node_color = colors, ax = ax1)
    
    A = nx.to_numpy_matrix(G)
    A2 = A.getA()
    A1 = []
    for x in range(S1):
        A1.append(A2[x][S1:])
    
    ax.grid()
    xtics = [x-0.5 for x in range(0,S2+1)]
    ytics = [x-0.5 for x in range(0,S1+1)]
    ax.set_yticks(ytics)
    ax.set_xticks(xtics)
    ax.set_ylabel('Impollinatori')
    ax.set_xlabel('Piante')
    ax.set_title('Configurazione casuale con C = '+format(p,'.2f'))
    ax.set_autoscale_on(True)
    
    plt.imshow(A1, cmap = 'Greys')
    if index == 1:
        fig.savefig('random_'+format(p,'.2f')+'.png')
    plt.close()
    if flag == False:
        if index == 1:
            my.print_tuple2(deg1, 'R_degree1-'+repr(index2), dir_name)
            my.print_tuple2(deg2, 'R_degree2-'+repr(index2), dir_name)
    else:
        O.print_list_csv(deg1, 'deg1_R-'+repr(index), dir_name)
        O.print_list_csv(deg2, 'deg2_R-'+repr(index), dir_name)
    file_path2 = "C:/Users/Utente/Anaconda3/UserScripts/Programmi cooperazione/"
    directory2 = os.path.dirname(file_path2)
    print('directory2 = ', directory2)
    print('curr_dir = ', curr_dir)
    os.chdir(directory2)
    return A1
示例#4
0
def adjacency_matrix_nested2(S1=10,
                             S2=10,
                             p=0.33,
                             dir_name='graph',
                             index=1,
                             index2=1,
                             flag=False):
    #balanced nested
    import networkx as nx
    import matplotlib.pyplot as plt
    import os
    from ensure_dir import ensure_dir
    import my_print as my
    import my_output as O
    script_dir = os.getcwd()
    file_path = dir_name + '/prova.txt'
    ensure_dir(file_path)
    directory = os.path.dirname(file_path)
    os.chdir(directory)
    #attenzione, funziona bene solo con S1 = S2
    G = nx.Graph()
    nodes = [x for x in range(S1 + S2)]
    G.add_nodes_from(nodes)
    #print(list(G.nodes()))
    edges = []
    for i in range(S1):
        for j in range(S1, S1 + S2 - i):
            edges.append((i, j))
    G.add_edges_from(edges)
    if p < 0.55:
        #this is where the actual edges are decided in most cases (C < 0.55) - different method
        G = adjust_edges1(G, S1, S2, p)
    if p > 0.55:
        G = adjust_edges2(G, S1, S2, p)
    deg = list(G.degree())
    deg1 = deg[:S1]
    deg2 = deg[S1:]
    pos = {x: [0, x] for x in range(S1)}
    for j in range(S2):
        pos[S1 + j] = [1, j]
    colors = ['r' for i in range(0, S1)]
    for j in range(S2):
        colors.append('b')
    A = nx.to_numpy_matrix(G)
    A2 = A.getA()
    A1 = []
    for x in range(S1):
        A1.append(A2[x][S1:])
    #rimettere if index == 1
    if index == 0:
        plt.style.use('seaborn')
        fig, [ax1, ax] = plt.subplots(1, 2, figsize=(10, 4))
        ax1.set_title('Interazioni mutualistiche nidificate')
        ax1.set_axis_off()
        ax1.set_autoscale_on(True)
        nx.draw_networkx(G, pos=pos, node_color=colors, ax=ax1)

        ax.grid()
        xtics = [x - 0.5 for x in range(0, S2 + 1)]
        ytics = [x - 0.5 for x in range(0, S1 + 1)]
        ax.set_yticks(ytics)
        ax.set_xticks(xtics)
        ax.set_ylabel('Impollinatori')
        ax.set_xlabel('Piante')
        ax.set_title('Configurazione nidificata con C = ' + format(p, '.2f'))
        ax.set_autoscale_on(True)
        plt.setp(ax.get_xticklabels(), visible=False)
        plt.setp(ax.get_yticklabels(), visible=False)
        plt.imshow(A1, cmap='Greys')
        plt.tight_layout()
        fig.savefig('nested_' + format(p, '.2f') + '_II.png')

    if index == 1:
        fig = plt.figure()
        ax = fig.add_subplot(111)
        ax.grid()
        xtics = [x - 0.5 for x in range(0, S2 + 1)]
        ytics = [x - 0.5 for x in range(0, S1 + 1)]
        ax.set_yticks(ytics)
        ax.set_xticks(xtics)
        ax.set_ylabel('Impollinatori')
        ax.set_xlabel('Piante')
        ax.set_title('Nested II tipo con C = ' + format(p, '.3f'))
        ax.set_autoscale_on(True)
        plt.setp(ax.get_xticklabels(), visible=False)
        plt.setp(ax.get_yticklabels(), visible=False)
        plt.tight_layout()
        plt.imshow(A1, cmap='Greys')

    if index == 1:
        fig.savefig('nested_' + format(p, '.2f') + '_II.png')
    if flag == False:
        if index == 1:
            my.print_tuple2(deg1, 'N_degree1-' + repr(index2), dir_name)
            my.print_tuple2(deg2, 'N_degree2-' + repr(index2), dir_name)
    else:
        O.print_list_csv(deg1, 'deg1_N-' + repr(index), dir_name)
        O.print_list_csv(deg2, 'deg2_N-' + repr(index), dir_name)
    plt.close()
    os.chdir(script_dir)
    return A1
示例#5
0
def adjacency_matrix_nested2(S1=10,
                             S2=10,
                             p=0.33,
                             dir_name='graph',
                             index=1,
                             index2=1,
                             flag=False):
    import networkx as nx
    import matplotlib.pyplot as plt
    import os
    from ensure_dir import ensure_dir
    import my_print as my
    import my_output as O
    file_path = dir_name + '/prova.txt'
    ensure_dir(file_path)
    directory = os.path.dirname(file_path)
    os.chdir(directory)
    #attenzione, funziona bene solo con S1 = S2
    G = nx.Graph()
    nodes = [x for x in range(S1 + S2)]
    G.add_nodes_from(nodes)
    #print(list(G.nodes()))
    edges = []
    for i in range(S1):
        for j in range(S1, S1 + S2 - i):
            edges.append((i, j))
    G.add_edges_from(edges)
    if p < 0.55:
        G = adjust_edges1(G, S1, S2, p)
    #if p > 0.55:
    #    G = adjust_edges2(G, S1, S2, p)
    deg = list(G.degree())
    deg1 = deg[:S1]
    deg2 = deg[S1:]
    pos = {x: [0, x] for x in range(S1)}
    for j in range(S2):
        pos[S1 + j] = [1, j]
    colors = ['r' for i in range(0, S1)]
    for j in range(S2):
        colors.append('b')

    fig, [ax1, ax] = plt.subplots(1, 2, figsize=(9, 4))
    ax1.set_title('Interazioni mutualistiche nested ')
    ax1.set_axis_off()
    ax1.set_autoscale_on(True)
    nx.draw_networkx(G, pos=pos, node_color=colors, ax=ax1)

    A = nx.to_numpy_matrix(G)
    A2 = A.getA()
    A1 = []
    for x in range(S1):
        A1.append(A2[x][S1:])

    ax.grid()
    xtics = [x - 0.5 for x in range(0, S2 + 1)]
    ytics = [x - 0.5 for x in range(0, S1 + 1)]
    ax.set_yticks(ytics)
    ax.set_xticks(xtics)
    ax.set_ylabel('Impollinatori')
    ax.set_xlabel('Piante')
    ax.set_title('Configurazione nested  con C = ' + format(p, '.2f'))
    ax.set_autoscale_on(True)

    plt.imshow(A1, cmap='Greys')
    if index == 1:
        fig.savefig('nested_' + format(p, '.2f') + '.png')
    if flag == False:
        if index == 1:
            my.print_tuple2(deg1, 'N_degree1-' + repr(index2), dir_name)
            my.print_tuple2(deg2, 'N_degree2-' + repr(index2), dir_name)
    else:
        O.print_list_csv(deg1, 'deg1_N-' + repr(index), dir_name)
        O.print_list_csv(deg2, 'deg2_N-' + repr(index), dir_name)
    plt.close()
    file_path2 = "C:/Users/Utente/Anaconda3/UserScripts/Programmi cooperazione/"
    directory2 = os.path.dirname(file_path2)
    os.chdir(directory2)
    return A1