((1. / (X + 1))**b - (1. / 10)**b) / (1 - (1. / 10)**b) ]) } # 3: np.array([np.arange(0.1,1,0.1), np.log(np.arange(0.1,1,0.1))])} label = { 1: "Ideal Classifier", 2: "Random Classifier", 3: "Typical Classifier" } for n in [1, 2, 3]: ax.plot(data[n][2], data[n][1], '-o', color=c[n - 1], label=label[n]) ax.fill_between(data[3][2], data[3][1], color=c[2], alpha=0.2) ax.legend(loc="best", prop={'size': 12}) my_plot.despine(ax) my_plot.setAxisSizeMM(fig, ax, 147, 90) plt.savefig("/home/alex/Desktop/Mock_ROC.pdf") plt.savefig("/home/alex/Desktop/Mock_ROC.png") fig, ax = plt.subplots() ax.set_xlim([-0.05, 9.05]) ax.set_ylim([-0.05, 1.05]) ax.set_xlabel("Classifier Parameter") ax.set_ylabel("True Positive Rate") plts = [] for n in [1, 2, 3]: p, = ax.plot(data[n][0], data[n][1], '-o', color=c[n - 1], label=label[n].split(" ")[0])
color = [("red" if m else "green") for m in motile] motile = np.array(motile, dtype=bool) fig, ax = plt.subplots() ax.set_title("Motility of T-Cells") ax.set_xlabel( r"Average Speed of Cell in $\frac{\mathrm{\mu m}}{\mathrm{min}}$") ax.set_ylabel(r"Average Turning Angle in Degrees") # ax.set_xlim([2,100]) # ax.set_ylim([40,140]) ax.semilogx() # ax.scatter(v*60,ang,label="System Tracks") ax.scatter(60 * v[motile], ang[motile], label="System Tracks (motile)") ax.scatter(60 * v[~motile], ang[~motile], label="System Tracks (immotile)") ax.legend(loc="best") my_plot.despine(ax) my_plot.setAxisSizeMM(fig, ax, width=147, height=90) plt.savefig("/home/alex/Desktop/Cell_Classification.png") plt.savefig("/home/alex/Desktop/Cell_Classification.pdf") # plt.semilogx() fig, ax = plt.subplots() ax.set_title("Velocity of T-Cells") ax.set_ylabel("Absolute Frequency") ax.set_xlabel(r"Velocity in $\frac{\mathrm{\mu m}}{\mathrm{min}}$") hist, bins = np.histogram(np.log(V * 60), bins=200, range=np.log([1e-3, 1e2])) ax.hist(V * 60, bins=np.exp(bins)) ax.semilogx() fig, ax = plt.subplots() ax.set_title("Velocity of T-Cells") ax.set_ylabel("Absolute Frequency")
min(biny), max(biny)]), extent=[-max(binx), -min(binx), min(biny), max(biny)]) hist_plot = ax.imshow( hist.T[::-1, ::-1], extent=[-max(binx), -min(binx), min(biny), max(biny)], cmap="jet", alpha=0.4, vmin=1., vmax=max(2, np.nanmean(hist) + np.nanstd(hist))) cbar = fig.colorbar(hist_plot) cbar.ax.set_ylabel( r"Penguin Probability in $\frac{1}{\mathrm{m}^2\mathrm{h}}$") my_plot.setAxisSizeMM(fig, ax, 147) plt.savefig("/home/birdflight/Desktop/Heat_Map.png") plt.savefig("/home/birdflight/Desktop/Heat_Map.pdf") fig, ax = plt.subplots() ax.set_title("Position Heatmap") # ax.set_xlabel("X-Distance to camera in m") # ax.set_ylabel("Y-Distance to camera in m") ax.imshow(image[::-1]) hist_plot = ax.imshow( hist_img.T, extent=[0, 4608, 0, 2592], cmap="jet", alpha=.4) #,vmin =1., vmax=max(2,np.nanmean(hist)+np.nanstd(hist))) # cbar = fig.colorbar(hist_plot) # cbar.ax.set_ylabel(r"Penguin Probability in $\frac{1}{\mathrm{m}^2\mathrm{h}}$") my_plot.setAxisSizeMM(fig, ax, 147) plt.savefig("/home/birdflight/Desktop/Heat_Map_Img.png")