示例#1
0
    def reconstruct_images(self,
                           save_file,
                           sess,
                           x,
                           block_shape,
                           show_original_images=True,
                           batch_size=20,
                           dec_output_2_img_func=None,
                           **kwargs):
        if batch_size < 0:
            x1 = self.reconstruct(sess, x, **kwargs)
        else:
            x1 = []
            for batch_ids in iterate_data(len(x), batch_size, shuffle=False):
                x1.append(self.reconstruct(sess, x[batch_ids], **kwargs))

            x1 = np.concatenate(x1, axis=0)

        if dec_output_2_img_func is not None:
            x1 = dec_output_2_img_func(x1)
            x = dec_output_2_img_func(x)

        x1 = np.reshape(x1, to_list(block_shape) + self.x_shape)
        x = np.reshape(x, to_list(block_shape) + self.x_shape)

        if show_original_images:
            save_img_blocks_col_by_col(save_file, [x, x1])
        else:
            save_img_block(save_file, x1)
示例#2
0
    def __init__(self, x_shape, z_shape):
        super(BaseLatentModel, self).__init__()

        self.x_shape = to_list(x_shape)
        self.z_shape = to_list(z_shape)
        self.x_ph = tf.placeholder(tf.float32, [None] + self.x_shape, name="x")
        self.z_ph = tf.placeholder(tf.float32, [None] + self.z_shape, name="z")
    def __init__(self, z_shape, stochastic=False, activation=tf.nn.relu):
        self.z_shape = to_list(z_shape)
        self.z_dim = prod(self.z_shape)

        self.stochastic = stochastic
        self.activation = activation

        print("[{}] activation: {}".format(self.__class__.__name__,
                                           self.activation))
示例#4
0
    def __init__(self, x_shape, y_shape,
                 input_perturber, main_classifier,
                 cons_mode='mse',
                 cons_4_unlabeled_only=False,
                 same_perturbed_inputs=False,
                 weight_decay=-1.0):

        LiteBaseModel.__init__(self)

        self.x_shape = to_list(x_shape)
        self.y_shape = to_list(y_shape)

        assert len(self.y_shape) == 1, "'y_shape' must be a scalar or an array of length 1!"
        self.num_classes = self.y_shape[0]

        self.x_ph = tf.placeholder(tf.float32, [None] + self.x_shape, name="x")
        self.y_ph = tf.placeholder(tf.int32, [None], name="y")
        self.label_flag_ph = tf.placeholder(tf.bool, [None], name="label_flag")

        # Main classifier
        self.main_classifier_name = "main_classifier"
        self.main_classifier_fn = tf.make_template(
            self.main_classifier_name, main_classifier, is_train=self.is_train)

        # Input perturber
        self.input_perturber_name = "input_perturber"
        self.input_perturber_fn = tf.make_template(
            self.input_perturber_name, input_perturber, is_train=self.is_train)

        possible_cons_modes = ['mse', 'kld', 'rev_kld', '2rand']
        assert cons_mode in possible_cons_modes, \
            "'cons_mode' must be in {}. Found {}!".format(possible_cons_modes, cons_mode)
        self.cons_mode = cons_mode
        self.cons_4_unlabeled_only = cons_4_unlabeled_only
        self.same_perturbed_inputs = same_perturbed_inputs
        self.weight_decay = weight_decay

        print("In class [{}]:".format(self.__class__.__name__))
        print("cons_mode: {}".format(self.cons_mode))
        print("cons_4_unlabeled_only: {}".format(self.cons_4_unlabeled_only))
        print("same_perturbed_inputs: {}".format(self.same_perturbed_inputs))
        print("weight_decay: {}".format(self.weight_decay))
示例#5
0
    def generate_images(self,
                        save_file,
                        sess,
                        z,
                        block_shape,
                        batch_size=20,
                        dec_output_2_img_func=None,
                        **kwargs):
        if batch_size < 0:
            x1_gen = self.decode(sess, z, **kwargs)
        else:
            x1_gen = []
            for batch_ids in iterate_data(len(z), batch_size, shuffle=False):
                x1_gen.append(self.decode(sess, z[batch_ids], **kwargs))

            x1_gen = np.concatenate(x1_gen, axis=0)

        if dec_output_2_img_func is not None:
            x1_gen = dec_output_2_img_func(x1_gen)

        x1_gen = np.reshape(x1_gen, to_list(block_shape) + self.x_shape)
        save_img_block(save_file, x1_gen)