示例#1
0
class TestDict(unittest.TestCase):
    def setUp(self):
        self.keys = {'a', 'b', 'c', 'd'}
        self.values = {'1', '2', '3', '4'}
        self.dict = MyDict()

    def testDict(self):
        for i in range(0, len(self.keys)):
            self.dict.put(self.keys.pop(), self.values.pop())
        for i in range(0, len(self.keys)):
            self.assertEqual(self.dict.get[self.keys[i]], self.values[i])
示例#2
0
 def testKey(self):
     myDictTest = MyDict()
     myDictTest['key'] = 'value'
     self.assertEqual(myDictTest.key, 'value')
示例#3
0
 def testInit(self):
     myDictTest = MyDict(a=1, b='test')
     self.assertEqual(myDictTest.a, 1)
     self.assertEqual(myDictTest.b, 'test')
     self.assertIsInstance(myDictTest, dict)
示例#4
0
文件: analog.py 项目: cellhone/analog
    f.close()
    return data

def fsave(filename, data):
    f = open(filename, "w")
    pickle.dump(data, f)
    f.close()
    return


## Test Main
if __name__ == "__main__":
    dictfile = 'dict.dat'
    configFile = 'analog.ini'
    acceptFile = 'accept.dat'   ## 採用するメッセージid一覧
    dict = MyDict(dictfile)
    dict.loadict()
    print 'dict count: %d' % dict.countDictWords()
    
    ## RNNメッセージID化
    vocab=10000
    dim=100
    y=94
    train = Trainer(vocab, dim, y)
    train.load('train')
    
    labellist = []  ## ラベル一覧(出力)
    #msglist = []    ## メッセージ一覧(無視リスト作成のため使用メッセージを保存)
    analizeRnnInputList = []
    analizeRnnLabelList = []
    
示例#5
0
 def test_attrerror(self):
     d = MyDict()
     with self.assertRaises(AttributeError):
         value = d.empty
示例#6
0
 def test_attr(self):
     d = MyDict()
     d.key = 'value'
     self.assertTrue('key' in d)
示例#7
0
 def setUp(self):
     self.keys = {'a', 'b', 'c', 'd'}
     self.values = {'1', '2', '3', '4'}
     self.dict = MyDict()
示例#8
0
 def testAttrError(self):
     myDictTest = MyDict()
     with self.assertRaises(AttributeError):
         value = myDictTest.empty
示例#9
0
source:
https://github.com/DQinYuan/AndroidMalwareWithN-gram

modified by Charlesdu
'''

from mydict import MyDict
import pandas as pd

#n-gram
n = 3

origin = pd.read_csv("gram_data.csv")


mdict = MyDict()

feature = origin["Feature"].str.split("|")
total = len(feature)

print(total)


for i, code in enumerate(feature):
    mdict.newLayer()
    if not type(code) == list:
        continue
    for method in code:
        length = len(method)
        if length < n:
            continue
示例#10
0
 def test_keyerror(self):
     d = MyDict()
     with self.assertRaises(KeyError):
         value = d['empty']
示例#11
0
 def test_attr(self):
     d = MyDict()
     d.key = 'value'
     self.assertTrue('key' in d)
     self.assertEqual(d['key'], 'value')
示例#12
0
        return self.fit_obj.transform(data)


## Test Main
if __name__ == "__main__":
    from prettyprint import pp
    from mydict import MyDict
    import sys

    arg1 = sys.argv[1] if len(sys.argv) == 2 else None
    ## 学習
    if arg1 == 'train':
        print "training..."

        dictfile = 'dict.dat'
        dict = MyDict(dictfile)
        dict.loadict()
        lids = dict.loadtext('jp.txt')
        dict.savedict()

        #vocab = dict.countDictWords()
        vocab = 10000
        dim = 100
        y = len(lids)
        print 'vocab=%d, dim=%d, y=%d' % (vocab, dim, y)
        train = Trainer(vocab, dim, y)

        epoch = 1000
        for j in range(epoch):
            i = 0
            for ids in lids:
示例#13
0
 def __init__(self):
     import pickle
     self.pos = MyDict()
     self.neg = MyDict()
     self.tot_pos, self.pos = pickle.load(open('pos_file', 'rb'))
     self.tot_neg, self.neg = pickle.load(open('neg_file', 'rb'))
示例#14
0
 def test_setattr2(self):
     d = MyDict()
     d.key = "value"
     self.assertTrue('key' in d)
     self.assertEqual(d['key'],"value")
示例#15
0
 def test_setattr(self):
     d = MyDict()
     d["key"]="value"
     self.assertEqual(d.key,"value")
示例#16
0
 def testValue(self):
     myDictTest = MyDict()
     myDictTest.key = 'value'
     self.assertTrue('key' in myDictTest)
     self.assertEqual(myDictTest['key'], 'value')
示例#17
0
 def testKeyError(self):
     myDictTest = MyDict()
     with self.assertRaises(KeyError):
         value = myDictTest['empty']
示例#18
0
 def test_init(self):
     d = MyDict(a=1, b='test')
     self.assertEqual(d.a, 1)
     self.assertEqual(d.b, 'test')
     self.assertTrue(isinstance(d, dict))
示例#19
0
文件: model.py 项目: cellhone/analog
    def predict(self, data):
        inmsg = data.split('\n')
        #inmsg = ['エージェントが可能な変更を行った後動作を開始しました']

        log.debug('predict: predict data=%s', inmsg)
        dictfile = self.model_path + '/dict.dat'
        configFile = self.model_path + '/analog.ini'
        dict = MyDict(dictfile)
        dict.loadict()
        print 'dict count: %d' % dict.countDictWords()

        ## 採用メッセージID
        acceptid = self.fload(self.model_path + '/accept.dat')
        print '**accept id:'
        print acceptid

        ## エラー定義の読み込み
        with open(self.model_path + '/error.json', 'r') as f:
            errjson = json.load(f, "utf-8")

        ## RNNメッセージID化
        vocab = 10000
        dim = 100
        y = 94
        train = Trainer(vocab, dim, y)
        train.load(self.model_path + '/train')

        labellist = []  ## ラベル一覧(出力)
        #msglist = []    ## メッセージ一覧(無視リスト作成のため使用メッセージを保存)
        analizeRnnInputList = []
        analizeRnnLabelList = []
        msgidlist = []
        for msgtxt in inmsg:
            ## wakachiで処理するため明示的にunicodeにする
            ## ex) cmapeerdが停止したためプロセスを再起動します
            #w = u'' + msgtxt
            #words = dict.wakachi(w.encode('utf-8'))
            words = dict.wakachi(msgtxt)
            ids = dict.words2ids(words)
            ## 改行のみはスキップ
            if ids == []:
                continue
            ## ex) [113, 63, 11, 9, 13, 104, 6, 7, 66, 8, 9, 10]
            y = train.predict(ids[::-1])
            wordid = y.data.argmax(1)[0]  ## ex) 84

            ## エラーリストにあるメッセージ以外は処理にしない
            if wordid in acceptid:
                msgidlist.append(wordid)
            else:
                print 'not accept id:%d, msg:%s' % (wordid, msgtxt)
                continue
            print '** msg prdict %d, %2f' % (wordid, y.data[0][wordid]
                                             )  ## 選択されたidの確率表示
        pp(inmsg)
        pp(msgidlist)

        ## 対象メッセージが無い
        if msgidlist == []:
            result = [{'score': 100, 'id': None, 'label': None}]
            return result

        ## エラーケースの予測
        config = ConfigParser.SafeConfigParser()
        config.read(configFile)

        dim_in = config.getint('analize', 'dim_in')
        dim_mid = config.getint('analize', 'dim_mid')
        dim_out = config.getint('analize', 'dim_out')
        """
        train = AnazlizeTrainer(dim_in, dim_mid, dim_out)
        train.load(self.model_path + '/train_analize')
        y = train.predict(msgidlist[::-1])
        print y.data.argmax(1)[0]
        rank = y.data.argsort()[0]
        uprank = map(int, rank[::-1])
        print uprank
        #print y.data[0]
        """

        train = AnazlizeTrainer(dim_in, dim_mid, dim_out)
        train.load(self.model_path + '/train_analize')
        #y = train.predict(msgidlist[::-1])

        targetlist = msgidlist
        resultlist = np.zeros(dim_out)  ## 確率結果の最大値を格納する配列
        print resultlist
        for i in range(len(targetlist)):
            target = targetlist[i:]
            y = train.predict(target[::-1])
            print target
            print y.data[0]
            for i in range(len(y.data[0])):
                if y.data[0][i] > resultlist[i]:
                    resultlist[i] = y.data[0][i]

        print resultlist
        #print y.data.argmax(1)[0]
        #rank = y.data.argsort()[0]
        rank = resultlist.argsort()
        uprank = map(int, rank[::-1])
        print uprank
        #print y.data[0]

        result = []
        for i in uprank:
            print '%d, %2f' % (i, resultlist[i])
            item = {
                'score': round(float(resultlist[i]) * 100, 2),
                'id': i,
                'label': errjson[i]['label']
            }
            result.append(item)

        return result
示例#20
0
 def test_key(self):
     d = MyDict()
     d['key'] = 'value'
     self.assertEqual(d.key, 'value')