rions = [tobohr * float(ln.split()[i]) for ln in geom for i in range(3, 6)] fions = [tobohr * float(ln.split()[i]) for ln in geom for i in range(6, 9)] rionslist.append(rions) fionslist.append(fions) #### define Atomic Feature Mapping #### afm = atomfm.AtomsFM(parameters) #### define NN machine and weights for all atoms #### nparameters = len(parameters) sigmoid = lambda x: 1.0 / (1.0 + math.exp(-x)) sigmoidp = lambda x: math.exp(-x) / (math.exp(-x) + 1.0)**2 sigmoidpp = lambda x: 2 * math.exp(-2 * x) / (math.exp( -x) + 1.0)**3 - math.exp(-x) / (math.exp(-x) + 1.0)**2 nn_machine = myfeedforward.MyFeedForward([nparameters, nparameters, 1], [sigmoid, sigmoid, lambda x: x], [sigmoidp, sigmoidp, lambda x: 1], [sigmoidpp, sigmoidpp, lambda x: 0]) nn_weights = [] for ii in range(nion): nn_weights += nn_machine.initial_w() print("lenght w=", len(nn_weights)) nw = len(nn_weights) / nion print("nw=", nw) #nframes=200 for it0 in range(10): alpha = 0.1 / nion allframesfm = [] for frame in range(nframes): framefm = []
def __init__(self, nsweeps, nlayers, parameterfilename, feidatafile, energygradient0): self.energygradient0 = energygradient0 parameters = [] with open(parameterfilename, 'r') as ff: data = ff.read() for line in data.split('\n'): ss = line.split() if (len(ss) > 1): p = [] for s in ss: if s.isdigit(): p += [int(s)] elif isFloat(s): p += [float(s)] ok = p[0] in range(0, 6) if (p[0] == 0): ok = ok and (len(p) == 2) if (p[0] == 1): ok = ok and (len(p) == 2) if (p[0] == 2): ok = ok and (len(p) == 4) if (p[0] == 3): ok = ok and (len(p) == 3) if (p[0] == 4): ok = ok and (len(p) == 5) if (p[0] == 5): ok = ok and (len(p) == 5) if ok: parameters.append(p) #### define Atomic Feature Mapping #### nparameters = len(parameters) #self.nparameters = nparameters self.afm = atomfm.AtomsFM(parameters) #### define NN machine #### self.nlayers = nlayers #sigmoid = lambda x: 1.0/(1.0+math.exp(-x)) #sigmoidp = lambda x: math.exp(-x)/(math.exp(-x)+1.0)**2 #sigmoidpp = lambda x: 2*math.exp(-2*x)/(math.exp(-x)+1.0)**3 - math.exp(-x)/(math.exp(-x)+1.0)**2 sigmoid = lambda x: math.tanh(x) sigmoidp = lambda x: (1.0 / math.cosh(x))**2 sigmoidpp = lambda x: -2.0 * math.tanh(x) * (1.0 / math.sech(x))**2 #anparameters = [nparameters] #asigmoid = [lambda x: x] #asigmoidp = [lambda x: 1] #asigmoidpp = [lambda x: 0] anparameters = [] asigmoid = [] asigmoidp = [] asigmoidpp = [] for i in range(nlayers): anparameters.append(nparameters) asigmoid.append(sigmoid) asigmoidp.append(sigmoidp) asigmoidpp.append(sigmoidpp) anparameters.append(1) asigmoid.append(lambda x: x) asigmoidp.append(lambda x: 1) asigmoidpp.append(lambda x: 0) self.nn_machine = myfeedforward.MyFeedForward(anparameters, asigmoid, asigmoidp, asigmoidpp) #### read in number of atoms #### with open(feidatafile, 'r') as ff: feidata = ff.readline() nion = int(feidata) self.nion = nion print("nion=", nion) #### define NN machine weights for all atoms #### self.nn_weights = [] for ii in range(nion): self.nn_weights += self.nn_machine.initial_w() self.nw = len(self.nn_weights) / nion alpha = 0.05 for (symbols, rions, fions, energy) in read_fei_file(feidatafile): #aalpha = alpha*random.random() aalpha = alpha * random.random() etmp = [] dedw = [] for ii in range(nion): fm = self.afm(rions, ii) print "fm=", fm eee = self.nn_machine.dyoutdw_gradient( fm, self.nn_weights[ii * self.nw:(ii + 1) * self.nw]) etmp += eee[0] dedw += eee[1] #print "etmp=",ii,eee[0],energy error = math.sqrt((sum(etmp) - energy)**2) derror1detmp = 2.0 * (sum(etmp) - energy) for i in range(len(self.nn_weights)): self.nn_weights[i] -= aalpha * derror1detmp * dedw[i] self.nn_machine.print_w(self.nn_weights[0]) print("Checking Energies and Forces") #nion3 = 3*nion frame = 1 sumerror = 0.0 maxerror = 0.0 for (symbols, rions, fions, energy) in read_fei_file(feidatafile): etmp0 = [] #force3 = [0.0]*nion3 for ii in range(nion): fm = self.afm(rions, ii) ee0 = self.nn_machine.evaluate( fm, self.nn_weights[ii * self.nw:(ii + 1) * self.nw]) etmp0 += ee0 #fafm = self.afm.Egradients(rions,ii) #eee = self.nn_machine.evaluate(fafm[0],self.nn_weights[ii*self.nw:(ii+1)*self.nw]) #fff = self.nn_machine.gradients_evaluate(fafm[0],self.nn_weights[ii*self.nw:(ii+1)*self.nw]) #esum += eee[0] #for jj in range(nion3): # for k in range(nparameters): # force3[jj] -= fafm[1][jj + k*nion3]*fff[k] error = math.sqrt((sum(etmp0) - energy)**2) print frame, sum(etmp0), energy, error sumerror += error if (error > maxerror): maxerror = error frame += 1 print(" - average error=", sumerror / frame, " maxerror=", maxerror)