def pooling_simple(x, kernel_size, stride=1, pad=0): x = as_variable(x) N, C, H, W = x.shape KH, KW = pair(kernel_size) PH, PW = pair(pad) SH, SW = pair(stride) OH = get_conv_outsize(H, KH, SH, PH) OW = get_conv_outsize(W, KW, SW, PW) col = im2col(x, kernel_size, stride, pad, to_matrix=True) col = col.reshape(-1, KH * KW) y = col.max(axis=1) y = y.reshape(N, OH, OW, C).transpose(0, 3, 1, 2) return y
def conv2d_simple(x, W, b=None, stride=1, pad=0): x, W = as_variable(x), as_variable(W) Weight = W # Width의 'W'와 헷깔리지 않기 위함 N, C, H, W = x.shape OC, C, KH, KW = Weight.shape SH, SW = pair(stride) PH, PW = pair(pad) OH = get_conv_outsize(H, KH, SH, PH) OW = get_conv_outsize(W, KW, SW, PW) col = im2col(x, (KH, KW), stride, pad, to_matrix=True) Weight = Weight.reshape(OC, -1).transpose() t = linear(col, Weight, b) y = t.reshape(N, OH, OW, OC).transpose(0, 3, 1, 2) return y
def col2im_array(col, img_shape, kernel_size, stride, pad, to_matrix=True): N, C, H, W = img_shape KH, KW = pair(kernel_size) SH, SW = pair(stride) PH, PW = pair(pad) OH = get_conv_outsize(H, KH, SH, PH) OW = get_conv_outsize(W, KW, SW, PW) if to_matrix: col = col.reshape(N, OH, OW, C, KH, KW).transpose(0, 3, 4, 5, 1, 2) img = np.zeros((N, C, H + 2 * PH + SH - 1, W + 2 * PW + SW - 1), dtype=col.dtype) for j in range(KH): j_lim = j + SH * OH for i in range(KW): i_lim = i + SW * OW img[:, :, j:j_lim:SH, i:i_lim:SW] += col[:, :, j, i, :, :] return img[:, :, PH:H + PH, PW:W + PW]
def im2col_array(img, kernel_size, stride, pad, to_matrix=True): N, C, H, W = img.shape KH, KW = pair(kernel_size) SH, SW = pair(stride) PH, PW = pair(pad) OH = get_conv_outsize(H, KH, SH, PH) OW = get_conv_outsize(W, KW, SW, PW) img = np.pad(img, ((0, 0), (0, 0), (PH, PH + SH - 1), (PW, PW + SW - 1)), mode='constant', constant_values=(0,)) col = np.ndarray((N, C, KH, KW, OH, OW), dtype=img.dtype) for j in range(KH): j_lim = j + SH * OH for i in range(KW): i_lim = i + SW * OW col[:, :, j, i, :, :] = img[:, :, j:j_lim:SH, i:i_lim:SW] if to_matrix: col = col.transpose((0, 4, 5, 1, 2, 3)).reshape((N * OH * OW, -1)) return col
def _init_W(self): C, OC = self.in_channels, self.out_channels KH, KW = pair(self.kernel_size) scale = np.sqrt(1 / (C(KH * KW))) W_data = np.random.randn(OC, C, KH, KW).astype(self.dtype) * scale self.W.data = W_data