示例#1
0
def plot_two_variables(lat1,
                       lon1,
                       var1,
                       lat2,
                       lon2,
                       var2,
                       figsize=None,
                       region_limit=None,
                       cl_res=None,
                       xtick=np.arange(-180, 180.1, 5),
                       ytick=np.arange(-90, 90.1, 5),
                       xtick1=None,
                       ytick1=None,
                       xtick2=None,
                       ytick2=None,
                       title1=None,
                       title2=None,
                       vmin1=None,
                       vmax1=None,
                       vmin2=None,
                       vmax2=None,
                       cl_color2='black',
                       lw1=1,
                       lw2=1,
                       unit1='',
                       unit2='',
                       y_offset=-0.08,
                       cmap1=None,
                       cmap2=None):
    """ Plot two variables

    Parameters
    ----------

    """

    out_data = {}
    out_data['pout'] = []

    # figure and ax_list
    if figsize is None:
        figsize = (10, 5)
    fig = plt.figure(figsize=figsize)
    ax_list = []

    # ticks
    if xtick1 is None:
        xtick1 = xtick
    if ytick1 is None:
        ytick1 = ytick
    if xtick2 is None:
        xtick2 = xtick
    if ytick2 is None:
        ytick2 = []

    # colorbar paramters
    h = 0.03

    # plot var1
    ax1 = add_geoaxes(fig,
                      121,
                      title=title1,
                      xtick=xtick1,
                      ytick=ytick1,
                      cl_res=cl_res,
                      lw=lw1)
    pout1 = cartopy_plot(lon1,
                         lat1,
                         var1,
                         ax=ax1,
                         vmin=vmin1,
                         vmax=vmax1,
                         cbar=False,
                         cmap=cmap1)
    ax1.reset_position()
    ax_list.append(ax1)
    out_data['pout'].append(pout1)
    pos1 = pout1['ax'].get_position()
    cax1 = fig.add_axes([pos1.x0, pos1.y0 + y_offset, pos1.width, h])
    cb1 = plt.colorbar(pout1['mesh'],
                       cax=cax1,
                       orientation='horizontal',
                       extend='max')
    cb1.set_label(unit1)

    # plot var2
    ax2 = add_geoaxes(fig,
                      122,
                      title=title2,
                      xtick=xtick2,
                      ytick=ytick2,
                      cl_res=cl_res,
                      lw=lw2,
                      cl_color=cl_color2)
    ax_list.append(ax2)
    pout2 = cartopy_plot(lon2,
                         lat2,
                         var2,
                         ax=ax2,
                         vmin=vmin2,
                         vmax=vmax2,
                         cbar=False,
                         cmap=cmap2)
    out_data['pout'].append(pout2)
    pos2 = pout2['ax'].get_position()
    cax2 = fig.add_axes([pos2.x0, pos2.y0 + y_offset, pos2.width, h])
    cb2 = plt.colorbar(pout2['mesh'],
                       cax=cax2,
                       orientation='horizontal',
                       extend='max')
    cb2.set_label(unit2)

    # set region limit
    if region_limit is not None:
        for i in range(len(ax_list)):
            ax = ax_list[i]
            ax.set_xlim(region_limit[1], region_limit[3])
            ax.set_ylim(region_limit[0], region_limit[2])

    return out_data
import matplotlib.pyplot as plt
import numpy as np

from mylib.cartopy_plot import add_geoaxes, pcolormesh
from mylib.pro_modis.read_modis import get_modis_1km_rgb

#filename = './MYD021KM.A2015344.0725.006.2015344193947.hdf'
filename = 'MYD021KM.A2018301.1825.061.2018302153109.hdf'

# get data
lat, lon, rgb = get_modis_1km_rgb(filename)

# plot
fig = plt.figure()
xtick = np.arange(-180, 180.1, 5)
ytick = np.arange(-90, 90.1, 5)
ax = add_geoaxes(fig, 111, xtick=xtick, ytick=ytick)
title = '.'.join(filename.split('/')[-1].split('.')[0:4])
pcolormesh(ax, lon, lat, rgb, title=title)

figname = './' + title + '.png'
plt.savefig(figname, format='png', dpi=300)
示例#3
0
# get latitude and longitude
lon_c, lat_c = np.meshgrid(mo_lon, mo_lat)
lat_e, lon_e = calculate_pixel_edge2(lat_c, lon_c)

#print(np.min(lat_c), np.max(lat_c))
#print(np.min(lon_c), np.max(lon_c))
#    
#print(np.min(lat_e), np.max(lat_e))
#print(np.min(lon_e), np.max(lon_e))

# fig
fig = plt.figure(figsize=(6,7))

# average of AOD
ave_AOD = np.mean(AOD, axis=0)
ax1 = add_geoaxes(fig, 211)
cb1_prop = dict()
cb1_prop['orientation'] = 'horizontal'
cb1_prop['shrink'] = 0.7
cb1_prop['aspect'] = 25
cb1_prop['pad'] = 0.12
cb1_prop['extend'] = 'max'
res1 = pcolormesh(ax1, lon_e, lat_e, ave_AOD, vmin=0.0, vmax=1.0, cbar=True, cbar_prop=cb1_prop)
cb1 = res1['cb']
cb1.set_label('Average AOD [unitless]')


# AOD trend
trend = np.zeros(ave_AOD.shape)
trend_sigma = np.zeros(ave_AOD.shape)
for i in range(ave_AOD.shape[0]):
示例#4
0
def compare_two_varilables(filename, varname1, varname2,
        vmin=0.0, vmax=0.8,
        diff_min=None, diff_max=None,
        seperate_cbar=False,
        region_limit=None,
        sc_xlabel='',
        sc_ylabel='',
        sc_max=1.0,
        verbose=True):
    """
    """

    # read data
    coord_varns = ['Latitude_e', 'Longitude_e']
    some_varns = [varname1, varname2]
    varnames = coord_varns + some_varns
    data_dict = read_nc(filename, varnames, verbose=verbose)


    # region_limit
    if region_limit is not None:
        
        lat_e_1D = data_dict['Latitude_e'][:,0]
        lon_e_1D = data_dict['Longitude_e'][0,:]

        # index 
        i1 = get_center_index(lat_e_1D, region_limit[0])
        i2 = get_center_index(lat_e_1D, region_limit[2])
        j1 = get_center_index(lon_e_1D, region_limit[1])
        j2 = get_center_index(lon_e_1D, region_limit[3])

        for varn in varnames:
            if varn in coord_varns:
                data_dict[varn] = data_dict[varn][i1:i2+2,j1:j2+2]
            if varn in some_varns:
                data_dict[varn] = data_dict[varn][i1:i2+1,j1:j2+1]
        
    # plot
    fig = plt.figure(figsize=(8,7))
    plt.subplots_adjust(top=0.98)
    ax_list = []
    xtick = [100, 110, 120]
    ytick = [30, 40, 50]
    xtick_list = [xtick, xtick, xtick]
    ytick_list = [ytick, [], ytick]
    for i in range(len(xtick_list)):
        ax = add_geoaxes(fig, int('22'+str(i+1)),
                xtick=xtick_list[i], ytick=ytick_list[i])
        ax_list.append(ax)

    lat_e = data_dict['Latitude_e']
    lon_e = data_dict['Longitude_e']

    # colorbar height
    h = 0.02

    # variables
    for i in range(len(some_varns)):

        varn = some_varns[i]
        var = data_dict[varn]
        ax = ax_list[i]
        var_out = cartopy_plot(lon_e, lat_e, var, ax=ax,
                vmin=vmin, vmax=vmax,
                cbar=seperate_cbar, cmap=deepcopy(WhGrYlRd_map))
        add_China_province(ax)

    # colorbar for variables
    ax1 = ax_list[0]
    ax2 = ax_list[1]
    cax_v = h_2_ax(fig, ax1, ax2, y_off=-0.06, height=h)
    plt.colorbar(var_out['mesh'], cax=cax_v, orientation='horizontal')
    right_center_label(cax_v, '[DU]')


    # difference
    ax = ax_list[2]
    var_diff = data_dict[varname2] - data_dict[varname1]
    diff_out = cartopy_plot(lon_e, lat_e, var_diff, ax=ax,
            vmin=diff_min, vmax=diff_max,
            cbar=seperate_cbar, cmap=plt.get_cmap('seismic'))
    add_China_province(ax)

    # colorbar of difference
    ax = ax_list[2]
    cax_diff = h_1_ax(fig, ax, y_off=-0.06, height=h)
    plt.colorbar(diff_out['mesh'], cax=cax_diff, orientation='horizontal')
    right_center_label(cax_diff, '[DU]')

    # scatter plot
    ax_sc = fig.add_subplot(224)
    ax_sc.set_aspect('equal')
    ax_sc.set_xlabel(sc_xlabel)
    ax_sc.set_ylabel(sc_ylabel)
    ax_sc.set_xlim([0,1.0])
    ax_sc.set_ylim([0,1.0])
    label_ul = ['R', 'linear_eq', 'rmse', 'nmb', 'mb', 'N']
    scatter(ax_sc, data_dict[varname1], data_dict[varname2], s=3,
            label_ul=label_ul)


    # region
    if region_limit is not None:
        for ax in ax_list:
            ax.set_xlim(region_limit[1], region_limit[3])
            ax.set_ylim(region_limit[0], region_limit[2])
示例#5
0
def plot_NO2_combine(dir_mean,
                     dir_month,
                     start_year,
                     end_year,
                     year,
                     month,
                     verbose=False,
                     region_limit=[-90.0, -180.0, 90.0, 180.0],
                     dir_fig=None,
                     vmin_mean=0.0,
                     vmax_mean=0.5,
                     vmin_ano=-0.1,
                     vmax_ano=0.1,
                     vmin_ano_per=-50.0,
                     vmax_ano_per=50.0):
    """ Plot mutli-year mean of monthly NO2, monthly NO2
    anomaly and monthly NO2 relative anomaly.

    Parameters
    ----------
    dir_mean : str
        Directory of mutli-year mean of monthly NO2
    dir_month : str
        Directory of monthly NO2
    start_year : str
        Used to generate filename and longname
    end_year : str
        Used to generate filename and longname
    year : str
        Used to generate filename and longname
    month : str
        Used to generate filename and longname
    verbose : logical
        output more information
    region_limit : list
        The region for plot. [min_lat, min_lon, max_lat, max_lon]
    dir_fig : str or None
        If it is str, save figure to the directory

    """

    # used to convert unit
    toDU = 2.69e16

    # colorbar parameters
    pad = 0.01
    aspect = 15

    # read monthly data
    file_month = dir_month + 'OMI_NO2_' + year + '-' +  month \
            + '_monthly.nc'
    NO2_month = io.read_month_OMI_NO2_L3(file_month, verbose=verbose)
    NO2_month = NO2_month / toDU

    # read mutli-year mean of monthly NO2
    NO2_mean = io.read_multi_year_month_OMI_NO2_L3(dir_mean,
                                                   start_year,
                                                   end_year,
                                                   month,
                                                   verbose=verbose)
    NO2_mean = NO2_mean / toDU

    # NO2 anoanmly
    NO2_ano = NO2_month - NO2_mean

    # NO2 realtive anoamly
    NO2_ano_percent = NO2_ano / NO2_mean * 100.0

    # generate grid
    nlat_c, nlon_c = 720, 1440
    lat_e, lon_e, lat_c, lon_c = generate_grid(nlat_c, nlon_c)

    # get region data
    i1 = get_center_index(lat_e, region_limit[0])
    i2 = get_center_index(lat_e, region_limit[2])
    j1 = get_center_index(lon_e, region_limit[1])
    j2 = get_center_index(lon_e, region_limit[3])
    NO2_mean = NO2_mean[i1:i2 + 1, j1:j2 + 1]
    NO2_ano = NO2_ano[i1:i2 + 1, j1:j2 + 1]
    NO2_ano_percent = NO2_ano_percent[i1:i2 + 1, j1:j2 + 1]
    lat_e = lat_e[i1:i2 + 2]
    lon_e = lon_e[j1:j2 + 2]

    # begin plot
    #fig = plt.figure(figsize=(4, 8))
    fig = plt.figure()
    xtick = np.arange(-180, 180.1, 20)
    ytick = np.arange(-90, 90.1, 10)
    ax_list = []

    # mutli-year mean of monthly NO2
    title1 = start_year + '-' + end_year + ', ' + month \
            + r', NO$_2$'
    ax1 = add_geoaxes(fig, 311, xtick=[], ytick=ytick, title=title1)
    ax_list.append(ax1)
    pout1 = pcolormesh(ax1,
                       lon_e,
                       lat_e,
                       NO2_mean,
                       vmin=vmin_mean,
                       vmax=vmax_mean)
    cbar1 = fig.colorbar(pout1['mesh'],
                         ax=ax1,
                         extend='max',
                         pad=pad,
                         aspect=aspect)
    cbar1.set_label(r'[DU]')

    # anomaly
    title2 = year + ', ' + month + ', anomaly'
    ax2 = add_geoaxes(fig, 312, xtick=[], ytick=ytick, title=title2)
    ax_list.append(ax2)
    pout2 = pcolormesh(ax2,
                       lon_e,
                       lat_e,
                       NO2_ano,
                       cmap=plt.get_cmap('seismic'),
                       vmin=vmin_ano,
                       vmax=vmax_ano)
    cbar2 = fig.colorbar(pout2['mesh'],
                         ax=ax2,
                         extend='both',
                         pad=pad,
                         aspect=aspect)
    cbar2.set_label(r'[DU]')

    # relative anomaly
    title3 = year + ', ' + month + ', relative anomaly'
    ax3 = add_geoaxes(fig, 313, xtick=xtick, ytick=ytick, title=title3)
    ax_list.append(ax3)
    pout3 = pcolormesh(ax3,
                       lon_e,
                       lat_e,
                       NO2_ano_percent,
                       cmap=plt.get_cmap('seismic'),
                       vmin=vmin_ano_per,
                       vmax=vmax_ano_per)
    cbar3 = fig.colorbar(pout3['mesh'],
                         ax=ax3,
                         extend='both',
                         pad=pad,
                         aspect=aspect)
    cbar3.set_label(r'[%]')

    # set axes
    states_provinces = cfeature.NaturalEarthFeature(
        category='cultural',
        name='admin_1_states_provinces_lines',
        scale='50m',
        facecolor='none')
    for ax in ax_list:
        ax.add_feature(cfeature.BORDERS)
        ax.add_feature(states_provinces, edgecolor='k', linewidth=0.5)
        ax.add_feature(cfeature.COASTLINE, zorder=200)
        ax.add_feature(cfeature.OCEAN, color='w', zorder=100)
        ax.set_xlim((region_limit[1], region_limit[3]))
        ax.set_ylim((region_limit[0], region_limit[2]))

    plt.subplots_adjust(hspace=0.3)

    # save figure
    if dir_fig is not None:
        figname = dir_fig + 'NO2_anomaly_' + year + '-' + month \
                + '_from_' + start_year + '-' + end_year + '.png'
    plt.savefig(figname, format='png', dpi=300)

    return fig