def show_res(raw_set, n, k, new_min, new_max): for i in range(n): training_set, test_set = mylib.n_fold(n, i, raw_set) training_data, training_label = mylib.get_data_label(training_set) factory = KnnFactory(training_data, training_label) knn_machine_5 = factory.get_KnnMachine(k, new_min, new_max) test_data, test_label = mylib.get_data_label(test_set) res_label = knn_machine_5.predict(test_data) confusion = mylib.confusion_matrix(test_label, res_label) accuracy = mylib.get_accuracy(confusion) precision = mylib.get_precision(confusion) recall = mylib.get_recall(confusion) f1_score = mylib.get_f1_score(confusion) print("***itr: ", i, " ***") print("confusion matrix:") print(confusion) print("accuracy: ", accuracy) print("precision: ", precision) print("recall: ", recall) print("f1_score: ", f1_score)
def show_res(raw_set, n, sec_num): for i in range(n): training_set, test_set = mylib.n_fold(n, i, raw_set) training_data, training_label = mylib.get_data_label(training_set) factory = NaiveBayesFactory(training_data, training_label) bayes_5 = factory.get_naiveBayes_machine(sec_num) test_data, test_label = mylib.get_data_label(test_set) res_label = bayes_5.predict(test_data) confusion = mylib.confusion_matrix(test_label, res_label) accuracy = mylib.get_accuracy(confusion) precision = mylib.get_precision(confusion) recall = mylib.get_recall(confusion) f1_score = mylib.get_f1_score(confusion) print("**************itr: ", i, " **************") print("confusion matrix:") print(confusion) print("accuracy: ", accuracy) print("precision: ", precision) print("recall: ", recall) print("f1_score: ", f1_score)
def show_res(raw_set, n, k, branch_num, impurity_fun, sub_space_fun, seed): for i in range(n): training_set, test_set = mylib.n_fold(n, i, raw_set) training_data, training_label = mylib.get_data_label(training_set) factory = ForestFactory(training_data, training_label) randForest = factory.get_RF(k, branch_num, impurity_fun, sub_space_fun, seed) test_data, test_label = mylib.get_data_label(test_set) true_label = mylib.convert_label(test_label) res_label = randForest.predict(test_data) confusion = mylib.confusion_matrix(true_label, res_label) accuracy = mylib.get_accuracy(confusion) precision = mylib.get_precision(confusion) recall = mylib.get_recall(confusion) f1_score = mylib.get_f1_score(confusion) print("**************itr: ", i, " **************") print("confusion matrix:") print(confusion) print("accuracy: ", accuracy) print("precision: ", precision) print("recall: ", recall) print("f1_score: ", f1_score)
def show_res(raw_set, n, gate_num, sub_space_fun, seed): for i in range(n): training_set, test_set = mylib.n_fold(n, i, raw_set) training_data, training_label = mylib.get_data_label(training_set) factory = TreeFactory(training_data, training_label) dtree = factory.get_DT_machine(gate_num, mylib.entropy, sub_space_fun, seed) test_data, test_label = mylib.get_data_label(test_set) true_label = mylib.convert_label(test_label) res_label = dtree.predict(test_data) confusion = mylib.confusion_matrix(true_label, res_label) accuracy = mylib.get_accuracy(confusion) precision = mylib.get_precision(confusion) recall = mylib.get_recall(confusion) f1_score = mylib.get_f1_score(confusion) print("**************itr: ", i, " **************") print("confusion matrix:") print(confusion) print("accuracy: ", accuracy) print("precision: ", precision) print("recall: ", recall) print("f1_score: ", f1_score)