def train(args):
    check_paths(args)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    if args.cuda:
        torch.cuda.manual_seed(args.seed)
        kwargs = {'num_workers': 0, 'pin_memory': False}
    else:
        kwargs = {}

    transform = transforms.Compose([
        transforms.Scale(args.image_size),
        transforms.CenterCrop(args.image_size),
        transforms.ToTensor(),
        transforms.Lambda(lambda x: x.mul(255))
    ])
    train_dataset = datasets.ImageFolder(args.dataset, transform)
    train_loader = DataLoader(train_dataset,
                              batch_size=args.batch_size,
                              **kwargs)

    style_model = Net(ngf=args.ngf)
    if args.resume is not None:
        print('Resuming, initializing using weight from {}.'.format(
            args.resume))
        style_model.load_state_dict(torch.load(args.resume))
    print(style_model)
    optimizer = Adam(style_model.parameters(), args.lr)
    mse_loss = torch.nn.MSELoss()

    vgg = Vgg16()
    utils.init_vgg16(args.vgg_model_dir)
    vgg.load_state_dict(
        torch.load(os.path.join(args.vgg_model_dir, "vgg16.weight")))

    if args.cuda:
        style_model.cuda()
        vgg.cuda()

    style_loader = StyleLoader(args.style_folder, args.style_size)

    for e in range(args.epochs):
        style_model.train()
        agg_content_loss = 0.
        agg_style_loss = 0.
        count = 0
        for batch_id, (x, _) in enumerate(train_loader):
            n_batch = len(x)
            count += n_batch
            optimizer.zero_grad()
            x = Variable(utils.preprocess_batch(x))
            if args.cuda:
                x = x.cuda()

            style_v = style_loader.get(batch_id)
            style_model.setTarget(style_v)

            style_v = utils.subtract_imagenet_mean_batch(style_v)
            features_style = vgg(style_v)
            gram_style = [utils.gram_matrix(y) for y in features_style]

            y = style_model(x)
            xc = Variable(x.data.clone(), volatile=True)

            y = utils.subtract_imagenet_mean_batch(y)
            xc = utils.subtract_imagenet_mean_batch(xc)

            features_y = vgg(y)
            features_xc = vgg(xc)

            f_xc_c = Variable(features_xc[1].data, requires_grad=False)

            content_loss = args.content_weight * mse_loss(
                features_y[1], f_xc_c)

            style_loss = 0.
            for m in range(len(features_y)):
                gram_y = utils.gram_matrix(features_y[m])
                gram_s = Variable(gram_style[m].data,
                                  requires_grad=False).repeat(
                                      args.batch_size, 1, 1, 1)
                style_loss += args.style_weight * mse_loss(
                    gram_y, gram_s[:n_batch, :, :])

            total_loss = content_loss + style_loss
            total_loss.backward()
            optimizer.step()

            agg_content_loss += content_loss.data[0]
            agg_style_loss += style_loss.data[0]

            if (batch_id + 1) % args.log_interval == 0:
                mesg = "{}\tEpoch {}:\t[{}/{}]\tcontent: {:.6f}\tstyle: {:.6f}\ttotal: {:.6f}".format(
                    time.ctime(), e + 1, count, len(train_dataset),
                    agg_content_loss / (batch_id + 1),
                    agg_style_loss / (batch_id + 1),
                    (agg_content_loss + agg_style_loss) / (batch_id + 1))
                print(mesg)

            if (batch_id + 1) % (4 * args.log_interval) == 0:
                # save model
                style_model.eval()
                style_model.cpu()
                save_model_filename = "Epoch_" + str(e) + "iters_" + str(
                    count) + "_" + str(time.ctime()).replace(
                        ' ', '_') + "_" + str(args.content_weight) + "_" + str(
                            args.style_weight) + ".model"
                save_model_path = os.path.join(args.save_model_dir,
                                               save_model_filename)
                torch.save(style_model.state_dict(), save_model_path)
                style_model.train()
                style_model.cuda()
                print("\nCheckpoint, trained model saved at", save_model_path)

    # save model
    style_model.eval()
    style_model.cpu()
    save_model_filename = "Final_epoch_" + str(args.epochs) + "_" + str(
        time.ctime()).replace(' ', '_') + "_" + str(
            args.content_weight) + "_" + str(args.style_weight) + ".model"
    save_model_path = os.path.join(args.save_model_dir, save_model_filename)
    torch.save(style_model.state_dict(), save_model_path)

    print("\nDone, trained model saved at", save_model_path)
示例#2
0
def optimize(args):
    """	Gatys et al. CVPR 2017
	ref: Image Style Transfer Using Convolutional Neural Networks
	"""
    z = load_all()
    # load the content and style target
    content_image = utils.tensor_load_rgbimage(args.content_image,
                                               size=args.content_size,
                                               keep_asp=True)
    content_image = content_image.unsqueeze(0)
    content_image = Variable(utils.preprocess_batch(content_image),
                             requires_grad=False)
    content_image = utils.subtract_imagenet_mean_batch(content_image)
    style_image = utils.tensor_load_rgbimage(args.style_image,
                                             size=args.style_size)
    style_image = style_image.unsqueeze(0)
    style_image = Variable(utils.preprocess_batch(style_image),
                           requires_grad=False)
    style_image = utils.subtract_imagenet_mean_batch(style_image)

    # load the pre-trained vgg-16 and extract features
    vgg = Vgg16()
    utils.init_vgg16(args.vgg_model_dir)
    vgg.load_state_dict(
        torch.load(os.path.join(args.vgg_model_dir, "vgg16.weight")))
    if args.cuda:
        content_image = content_image.cuda()
        style_image = style_image.cuda()
        vgg.cuda()
    features_content = vgg(content_image)
    f_xc_c = Variable(features_content[1].data, requires_grad=False)
    features_style = vgg(style_image)
    gram_style = [utils.gram_matrix(y) for y in features_style]

    # init optimizer
    output = Variable(content_image.data, requires_grad=True)
    optimizer = Adam([output], lr=args.lr)
    mse_loss = torch.nn.MSELoss()
    # optimizing the images
    for e in range(args.iters):
        utils.imagenet_clamp_batch(output, 0, 255)
        temp = utils.add_imagenet_mean_batch(output)
        utils.tensor_save_bgrimage(temp.data[0],
                                   'output/temp' + str(e) + '.jpg', args.cuda)
        optimizer.zero_grad()
        features_y = vgg(output)
        content_loss = args.content_weight * mse_loss(features_y[1], f_xc_c)

        skip_vec, bneg, bpos = generate_story_loss(
            z, 'output/temp' + str(e) + '.jpg')
        skip_vec = Variable(torch.from_numpy(skip_vec), requires_grad=False)
        bpos = Variable(torch.from_numpy(bpos), requires_grad=False)
        # style_loss = args.style_weight * mse_loss(skip_vec, bpos).cuda()
        #            print "Content Loss:"+str(content_loss)+"Style Loss:"+str(style_loss)
        for m in range(len(features_y)):
            gram_y = utils.gram_matrix(features_y[m])
            gram_s = Variable(gram_style[m].data, requires_grad=False)
            style_loss += args.style_weight * mse_loss(gram_y, gram_s)

        total_loss = content_loss + style_loss

        if (e + 1) % args.log_interval == 0:
            print(total_loss.data.cpu().numpy()[0])
        total_loss.backward()

        optimizer.step()
    # save the image
    output = utils.add_imagenet_mean_batch(output)
    utils.tensor_save_bgrimage(output.data[0], args.output_image, args.cuda)