#Load needed libraries import numpy as np, nibabel as nib, nagini, sys, scipy.optimize as opt, scipy.interpolate as interp from tqdm import tqdm ######################### ###Data Pre-Processing### ######################### print('Loading images...') #Load image headers pet = nagini.loadHeader(args.pet[0]) brain = nagini.loadHeader(args.brain[0]) #Load in the idaif. idaif = nagini.loadIdaif(args.idaif[0]) #Load in the info file info = nagini.loadInfo(args.info[0]) #Check to make sure dimensions match if pet.shape[0:3] != brain.shape[0:3] or pet.shape[3] != idaif.shape[ 0] or pet.shape[3] != info.shape[0]: print 'ERROR: Data dimensions do not match. Please check...' sys.exit() #Get the image data petData = pet.get_data() brainData = brain.get_data() #Flatten the PET images and then mask
#Load needed libraries import numpy as np, nibabel as nib, nagini, sys, scipy.optimize as opt, scipy.interpolate as interp from tqdm import tqdm ######################### ###Data Pre-Processing### ######################### print ('Loading images...') #Load image headers pet = nagini.loadHeader(args.pet[0]) brain = nagini.loadHeader(args.brain[0]) #Load in the idaif. idaif = nagini.loadIdaif(args.idaif[0]) #Load in the info file info = nagini.loadInfo(args.info[0]) #Check to make sure dimensions match if pet.shape[0:3] != brain.shape[0:3] or pet.shape[3] != idaif.shape[0] or pet.shape[3] != info.shape[0]: print 'ERROR: Data dimensions do not match. Please check...' sys.exit() #Get the image data petData = pet.get_data() brainData = brain.get_data() #Flatten the PET images and then mask petMasked = nagini.reshape4d(petData)[brainData.flatten()>0,:]