def run_report(issuetype, url): download_csv_file(issuetype=issuetype, url=url) pdata = pd.read_csv(issuetype + '.csv', dtype='unicode') efforts = [] for col in pdata.filter(regex='Log').itertuples(): for row in col: if (type(row) is not float and type(row) is not int): # is not NaN efforts.append(row.split(';')[-2:]) peffort = pd.DataFrame(efforts, columns=['Name', 'Hr']) peffort['Hr'] = pd.to_numeric(peffort['Hr']) / 3600 result = peffort.groupby('Name', as_index=False).sum() result['Name'] = result['Name'].apply(lambda x: name.get_name(x)) result.to_excel(issuetype + '_report.xlsx')
def test_get_name(self): name = get_name() self.assertEqual(name, 'hello world')
def test_get_name_returns_input(self, input): self.assertEqual(get_name(), 'test')
def test_get_name_returns_default(self, input): self.assertEqual(get_name(), 'Pablo')
import name name = name.get_name() print(name)
# store the time line by level objects_count_frame = defaultdict(list) # store all the time line objects_count_frame_aux = defaultdict(list) # store values (int) for each level objects_count_total = dict.fromkeys(colors_dic.keys(), 0) # show the current count of products x_y = (10, 540) frame_video = draw_count(frame_video, objects_count_total, colors_dic, 'Total products', x_y) # show the video? show_video = True results_name = get_name(video_name) + '_results_' + get_time() # store the total count of producta of the current frame no_objects_list = [] #how many frames without any object have to happen to detect the new level frames_no_objects = 40 # frames sin objetcos 80 level_count = 0 f = 0 # frame # while thera are new frames from the video while (capture.isOpened()): stime = time.time() ret, frame = capture.read() if frame is None: break