d=dump(trajectory); d.sort() time=d.time() stats=np.zeros(len(time)) statsx=np.zeros(len(time)) statsy=np.zeros(len(time)) count=0 sumx=0 sumy=0 phobulk=0 # FlatSinMagnet_phi0.35_pe100_step1000000_Tau10.L100.lammpstrj #Output file names name="newLattice_cutoff{:}_{:}".format(cutoff,filename) outputfile="{:}.XYZ".format(namefiles.output(name)) fxyz=open(outputfile,"w") #look at displacements ..and subtract the total netdisplacement. grandsumx=0 grandsumy=0 xmid=int(xlattice/2.0) height=np.zeros(xlattice) for t in time: if count>skip and count%skip1==0: lattice=np.zeros((xlattice,ylattice)) #elegant module in pizza.py library. Easy way to process the lammpstrj files. d.vecs() goes frame by frame. idlist,typelist,xlist,ylist,zlist=d.vecs(t,"id","type","x","y","z") cmx=0
trajectory = "{:}.lammpstrj".format(filename) print "Input file:{0:s}".format(trajectory) d=dump(trajectory); d.sort() time=d.time() collect = len(time)-skip-(2*skip1) # of time frames to collect for. will have nsamples*(collect-skip)/skip1 total samples in the end print collect nsamples = 10 nsamplesTotal = nsamples*(collect-skip)/skip1 name = "rhoLocalvsrhoRed_{:}".format(filename) outputfile = "{:}.stats".format(namefiles.output(name)) foutput=open(outputfile,"w") nsamples = 100 #number of probe volumes to sample in each frame r2 = pow(r,2.0) nmax = int(4*0.9069*r2) #close packed max # of particles in probe volumes n = np.zeros((nmax),dtype=int) #number of samples obtained rhoTotal = np.zeros(nmax) #n total particles as a function of the number of red(driven) particles. rhoTotalvar = np.zeros(nmax) rho = np.zeros(2) #rho[0] = n active particles, rho[1] = n passive particles. count = 0
vytype2 = np.zeros(np.divide(xhi, cg)) vytype1_std = np.zeros(np.divide(xhi, cg)) vytype2_std = np.zeros(np.divide(xhi, cg)) countersum1 = np.zeros(np.divide(xhi, cg)) countersum2 = np.zeros(np.divide(xhi, cg)) count = 0 sumx = 0 sumy = 0 #check= "dump/checktrajectory_{0:s}.XYZ".format(filename) #checkfile = open(check,"w") #Output file names name = "vprofUnnormalized_{:}".format(filename) outputfile = "{:}.stats".format(namefiles.output(name)) foutput = open(outputfile, "w") #look at displacements grandsumx = 0 grandsumy = 0 for t in time: if count > skip and count % skip1 == 0 and (count - skip) / skip1 < collect: #elegant module in pizza.py library. Easy way to process the lammpstrj files. d.vecs() goes frame by frame. idlist, typelist, xlist, ylist, zlist = d.vecs(t, "id", "type", "x", "y", "z") cmx = 0 cmy = 0