示例#1
0
    def add_gcps_from_variables(self, filename):
        ''' Get GCPs from GCPPixel, GCPLine, GCPX, GCPY, GCPZ variables '''
        gcpVariables = [
            'GCPX',
            'GCPY',
            'GCPZ',
            'GCPPixel',
            'GCPLine',
        ]
        # open input netCDF file for reading GCPs
        try:
            ncFile = Dataset(filename, 'r')
        except (TypeError, IOError) as e:
            self.logger.info('%s' % e)
            return None

        # check if all GCP variables exist in the file
        if not all([var in ncFile.variables for var in gcpVariables]):
            return None

        # get data from GCP variables into array
        varData = [ncFile.variables[var][:] for var in gcpVariables]
        varData = np.array(varData)

        # close input file
        ncFile.close()

        # create list of GDAL.GCPs
        gcps = [
            gdal.GCP(float(x), float(y), float(z), float(pixel), float(line))
            for x, y, z, pixel, line in varData.T
        ]

        return gcps
示例#2
0
    def add_gcps_from_metadata(self, geoMetadata):
        '''Get GCPs from strings in metadata and insert in dataset'''
        gcpNames = ['GCPPixel', 'GCPLine', 'GCPX', 'GCPY']
        gcpAllValues = []

        # for all gcp coordinates
        for i, gcpName in enumerate(gcpNames):
            # scan throught metadata and find how many lines with each GCP
            gcpLineCount = 0
            for metaDataItem in geoMetadata:
                if gcpName in metaDataItem:
                    gcpLineCount += 1
            # concat all lines
            gcpString = ''
            for n in range(0, gcpLineCount):
                gcpLineName = '%s_%03d' % (gcpName, n)
                gcpString += geoMetadata[gcpLineName]
            # convert strings to floats
            gcpString = gcpString.strip().replace(' ', '')
            gcpValues = []
            # append all gcps from string
            for x in gcpString.split('|'):
                if len(x) > 0:
                    gcpValues.append(float(x))
            # gcpValues = [float(x) for x in gcpString.strip().split('|')]
            gcpAllValues.append(gcpValues)

        # create list of GDAL GCPs
        gcps = []
        for i in range(0, len(gcpAllValues[0])):
            gcps.append(
                gdal.GCP(gcpAllValues[2][i], gcpAllValues[3][i], 0,
                         gcpAllValues[0][i], gcpAllValues[1][i]))

        return gcps
示例#3
0
    def get_gcps(self, flip_gcp_line=False):
        """ Get Ground Control Points for the dataset. 

        Note that OPeNDAP streams and netCDF files are read differently by gdal. The OPeNDAP streams
        are read by specifying the get parameters to the OPeNDAP url. The get parameters specify the
        reference dimensions, e.g., x and y. Since these are specified, the raster data is correctly
        referenced to the GCPs. However, when gdal reads a raster band from netCDF, it reads it
        "blindly". This is risky, since the definition of origo may be different in gdal vs the
        original data (e.g., first line starts in upper left corner or in lower left corner). For
        Sentinel-1, the raster data is flipped in relation to the GCPs, so we need to flip the GCP
        line vector as well.

        """
        lon = self.ds.variables['GCP_longitude_' + self.ds.polarisation[:2]][:]
        lat = self.ds.variables['GCP_latitude_' + self.ds.polarisation[:2]][:]
        line = self.ds.variables['GCP_line_' + self.ds.polarisation[:2]][:]
        if flip_gcp_line:
            # Flip line vector
            line = self.ds.dimensions['y'].size - line
        pixel = self.ds.variables['GCP_pixel_' + self.ds.polarisation[:2]][:]

        gcps = []
        for i0 in range(0, self.ds.dimensions['gcp_index'].size):
            gcp = gdal.GCP(float(lon[i0]), float(lat[i0]), 0, float(pixel[i0]),
                           float(line[i0]))
            gcps.append(gcp)

        return gcps
示例#4
0
    def init_from_xml(self, productXml):
        ''' Fast init from metada in XML only '''
        numberOfLines = int(
            productXml.node('imageAttributes').node('rasterAttributes').node(
                'numberOfLines').value)
        numberOfSamples = int(
            productXml.node('imageAttributes').node('rasterAttributes').node(
                'numberOfSamplesPerLine').value)

        VRT.__init__(self,
                     srcRasterXSize=numberOfSamples,
                     srcRasterYSize=numberOfLines)

        gcps = []
        geogrid = productXml.node('imageAttributes').node(
            'geographicInformation').node('geolocationGrid')
        for child in geogrid.children:
            pix = float(child.node('imageCoordinate').node('pixel').value)
            lin = float(child.node('imageCoordinate').node('line').value)
            lon = float(
                child.node('geodeticCoordinate').node('longitude').value)
            lat = float(
                child.node('geodeticCoordinate').node('latitude').value)
            gcps.append(gdal.GCP(lon, lat, 0, pix, lin))

        self.dataset.SetGCPs(gcps, NSR().wkt)

        dates = list(
            map(parse, [
                child.node('timeStamp').value for child in (productXml.node(
                    'sourceAttributes').node('orbitAndAttitude').node(
                        'orbitInformation').nodeList('stateVector'))
            ]))

        self.dataset.SetMetadataItem('time_coverage_start',
                                     min(dates).isoformat())
        self.dataset.SetMetadataItem('time_coverage_end',
                                     max(dates).isoformat())
        self.dataset.SetMetadataItem(
            'platform', json.dumps(pti.get_gcmd_platform('radarsat-2')))
        self.dataset.SetMetadataItem(
            'instrument', json.dumps(pti.get_gcmd_instrument('SAR')))
        self.dataset.SetMetadataItem('Entry Title', 'Radarsat-2 SAR')
        self.dataset.SetMetadataItem('Data Center', 'CSA')
        self.dataset.SetMetadataItem('ISO Topic Category', 'Oceans')
        self.dataset.SetMetadataItem('Summary', 'Radarsat-2 SAR data')
示例#5
0
    def create_gcps(x, y, z, p, l):
        """ Create GCPs from geolocation data

        Parameters
        ----------
        x, y, z, p, l
        N-D arrays with value of X, Y, Z, Pixel and Line coordinates.
        X and Y are typically lon, lat, Z - height.

        Returns
        -------
        gcps : list with GDAL GCPs

        """
        gcps = []
        for xi, yi, zi, pi, li in zip(x.flat, y.flat, z.flat, p.flat, l.flat):
            gcps.append(gdal.GCP(xi, yi, zi, pi, li))
        return gcps
示例#6
0
    def __init__(self,
                 filename,
                 gdalDataset,
                 gdalMetadata,
                 GCP_STEP=20,
                 MAX_LAT=90,
                 MIN_LAT=50,
                 resolution='low',
                 **kwargs):
        ''' Create VRT
        Parameters
        ----------
        GCP_COUNT : int
            number of GCPs along each dimention
        '''
        ifile = os.path.split(filename)[1]
        if not ifile.startswith('GW1AM2_') or not ifile.endswith('.h5'):
            raise WrongMapperError
        try:
            ProductName = gdalMetadata['ProductName']
            PlatformShortName = gdalMetadata['PlatformShortName']
            SensorShortName = gdalMetadata['SensorShortName']
        except:
            raise WrongMapperError

        if (not ProductName == 'AMSR2-L1R'
                or not PlatformShortName == 'GCOM-W1'
                or not SensorShortName == 'AMSR2'):
            raise WrongMapperError

        if resolution == 'low':
            subDatasetWidth = 243
        else:
            subDatasetWidth = 486

        # get GCPs from lon/lat grids
        latGrid = gdal.Open(
            'HDF5:"%s"://Latitude_of_Observation_Point_for_89A' %
            filename).ReadAsArray()
        lonGrid = gdal.Open(
            'HDF5:"%s"://Longitude_of_Observation_Point_for_89A' %
            filename).ReadAsArray()
        if subDatasetWidth == 243:
            latGrid = latGrid[:, ::2]
            lonGrid = lonGrid[:, ::2]

        dx = .5
        dy = .5
        gcps = []
        k = 0
        maxY = 0
        minY = latGrid.shape[0]
        for i0 in range(0, latGrid.shape[0], GCP_STEP):
            for i1 in range(0, latGrid.shape[1], GCP_STEP):
                # create GCP with X,Y,pixel,line from lat/lon matrices
                lon = float(lonGrid[i0, i1])
                lat = float(latGrid[i0, i1])
                if (lon >= -180 and lon <= 180 and lat >= MIN_LAT
                        and lat <= MAX_LAT):
                    gcp = gdal.GCP(lon, lat, 0, i1 + dx, i0 + dy)
                    gcps.append(gcp)
                    k += 1
                    maxY = max(maxY, i0)
                    minY = min(minY, i0)
        yOff = minY
        ySize = maxY - minY

        # remove Y-offset from gcps
        for gcp in gcps:
            gcp.GCPLine -= yOff

        metaDict = []

        subDatasets = gdalDataset.GetSubDatasets()
        metadata = gdalDataset.GetMetadata()
        for subDataset in subDatasets:
            # select subdatasets fro that resolution (width)
            if (subDatasetWidth == int(
                    subDataset[1].split(']')[0].split('x')[-1])
                    and 'Latitude' not in subDataset[0]
                    and 'Longitude' not in subDataset[0]):
                name = subDataset[0].split('/')[-1]
                # find scale
                scale = 1
                for meta in metadata:
                    if name + '_SCALE' in meta:
                        scale = float(metadata[meta])
                # create meta entry
                metaEntry = {
                    'src': {
                        'SourceFilename': subDataset[0],
                        'sourceBand': 1,
                        'ScaleRatio': scale,
                        'ScaleOffset': 0,
                        'yOff': yOff,
                        'ySize': ySize,
                    },
                    'dst': {
                        'name': name
                    }
                }
                metaDict.append(metaEntry)

        # create VRT from one of the subdatasets
        gdalSubDataset = gdal.Open(metaEntry['src']['SourceFilename'])
        self._init_from_dataset_params(subDatasetWidth, ySize,
                                       (1, 0, 0, ySize, 0, -1),
                                       NSR().wkt)
        # add bands with metadata and corresponding values to the empty VRT
        self.create_bands(metaDict)

        self.dataset.SetMetadataItem(
            'time_coverage_start',
            parse_time(gdalMetadata['ObservationStartDateTime']).isoformat())
        self.dataset.SetMetadataItem(
            'time_coverage_end',
            parse_time(gdalMetadata['ObservationEndDateTime']).isoformat())
        # append GCPs and lat/lon projection to the vsiDataset
        self.dataset.SetGCPs(gcps, NSR().wkt)
        self.reproject_gcps(
            '+proj=stere +datum=WGS84 +ellps=WGS84 +lat_0=90 +lon_0=0 +no_defs'
        )
        self.tps = True

        mm = pti.get_gcmd_instrument('AMSR2')
        ee = pti.get_gcmd_platform('GCOM-W1')
        self.dataset.SetMetadataItem('instrument', json.dumps(mm))
        self.dataset.SetMetadataItem('platform', json.dumps(ee))
示例#7
0
    def __init__(self,
                 filename,
                 gdalDataset,
                 gdalMetadata,
                 GCP_COUNT=10,
                 **kwargs):
        ''' Create VRT
        Parameters
        ----------
        GCP_COUNT : int
            number of GCPs along each dimention
        '''

        # extension must be .nc
        if os.path.splitext(filename)[1] != '.nc':
            raise WrongMapperError

        # file must contain navigation_data/longitude
        try:
            ds = gdal.Open('HDF5:"%s"://navigation_data/longitude' % filename)
        except RuntimeError:
            raise WrongMapperError
        else:
            dsMetadata = ds.GetMetadata()

        # title value must be known
        if dsMetadata.get('title', '') not in self.titles:
            raise WrongMapperError

        # get geophysical data variables
        subDatasets = gdal.Open(filename).GetSubDatasets()
        metaDict = []
        for subDataset in subDatasets:
            groupName = subDataset[0].split('/')[-2]
            if groupName not in ['geophysical_data', 'navigation_data']:
                continue
            varName = subDataset[0].split('/')[-1]
            subds = gdal.Open(subDataset[0])
            b = subds.GetRasterBand(1)
            bMetadata = b.GetMetadata()

            # set SRC/DST parameters
            metaEntry = {
                'src': {
                    'SourceFilename': subDataset[0],
                    'sourceBand': 1,
                    'DataType': b.DataType
                },
                'dst': {
                    'name': varName
                }
            }

            # replace datatype for l2_flags
            if varName == 'l2_flags':
                metaEntry['src']['DataType'] = 4
                metaEntry['src']['SourceType'] = 'SimpleSource'

            # set scale if exist
            metaKey = '%s_%s_scale_factor' % (groupName, varName)
            if metaKey in bMetadata:
                metaEntry['src']['ScaleRatio'] = bMetadata[metaKey]

            # set offset if exist
            metaKey = '%s_%s_add_offset' % (groupName, varName)
            if metaKey in bMetadata:
                metaEntry['src']['ScaleOffset'] = bMetadata[metaKey]

            # set standard_name if exists
            metaKey = '%s_%s_standard_name' % (groupName, varName)
            if metaKey in bMetadata:
                metaEntry['dst']['wkv'] = bMetadata[metaKey]

            # set other metadata
            for metaKey in bMetadata:
                newMetaKey = metaKey.replace('%s_%s_' % (groupName, varName),
                                             '')
                if newMetaKey not in [
                        'scale_factor', 'add_offset', 'DIMENSION_LIST',
                        '_FillValue'
                ]:
                    metaEntry['dst'][newMetaKey] = bMetadata[metaKey]
            metaDict.append(metaEntry)

        # make GCPs
        # get lat/lon grids
        longitude = gdal.Open('HDF5:"%s"://navigation_data/longitude' %
                              filename).ReadAsArray()
        latitude = gdal.Open('HDF5:"%s"://navigation_data/latitude' %
                             filename).ReadAsArray()
        rasterYSize, rasterXSize = longitude.shape

        step0 = max(1, int(float(latitude.shape[0]) / GCP_COUNT))
        step1 = max(1, int(float(latitude.shape[1]) / GCP_COUNT))

        gcps = []
        k = 0
        center_lon = 0
        center_lat = 0
        for i0 in range(0, latitude.shape[0], step0):
            for i1 in range(0, latitude.shape[1], step1):
                # create GCP with X,Y,pixel,line from lat/lon matrices
                lon = float(longitude[i0, i1])
                lat = float(latitude[i0, i1])

                if (lon >= -180 and lon <= 180 and lat >= -90 and lat <= 90):
                    gcp = gdal.GCP(lon, lat, 0, i1 + 0.5, i0 + 0.5)
                    gcps.append(gcp)
                    center_lon += lon
                    center_lat += lat
                    k += 1

        time_coverage_start = dsMetadata['time_coverage_start']
        time_coverage_end = dsMetadata['time_coverage_end']

        # create VRT
        # x_size, y_size, geo_transform, projection, gcps=None, gcp_projection='', **kwargs
        self._init_from_dataset_params(rasterXSize, rasterYSize,
                                       (0, 1, 0, rasterYSize, 0, -1),
                                       NSR().wkt, gcps,
                                       NSR().wkt)
        # add bands
        self.create_bands(metaDict)

        # reproject GCPs
        center_lon /= k
        center_lat /= k
        srs = '+proj=stere +datum=WGS84 +ellps=WGS84 +lon_0=%f +lat_0=%f +no_defs' % (
            center_lon, center_lat)
        self.reproject_gcps(srs)

        ### BAD, BAd, bad ...
        self.dataset.SetProjection(self.dataset.GetGCPProjection())

        # use TPS for reprojection
        self.tps = True

        # add NansenCloud metadata
        self.dataset.SetMetadataItem('time_coverage_start',
                                     str(time_coverage_start))
        self.dataset.SetMetadataItem('time_coverage_end',
                                     str(time_coverage_end))
        self.dataset.SetMetadataItem('source_type', 'Satellite')
        self.dataset.SetMetadataItem('mapper', 'obpg_l2_nc')

        platform = {
            'Orbview-2': 'SEASTAR'
        }.get(dsMetadata.get('platform'), dsMetadata.get('platform'))

        mm = pti.get_gcmd_instrument(dsMetadata.get('instrument'))
        ee = pti.get_gcmd_platform(platform)
        self.dataset.SetMetadataItem('instrument', json.dumps(mm))
        self.dataset.SetMetadataItem('platform', json.dumps(ee))
示例#8
0
    def __init__(self,
                 filename,
                 gdalDataset,
                 gdalMetadata,
                 GCP_COUNT=10,
                 **kwargs):
        ''' Create VRT
        Parameters
        ----------
        GCP_COUNT : int
            number of GCPs along each dimention
        '''

        # should raise error in case of not obpg_l2 file
        try:
            title = gdalMetadata["Title"]
        except:
            raise WrongMapperError

        if title not in self.titles:
            raise WrongMapperError

        # get subdataset and parse to VRT.__init__()
        # for retrieving geo-metadata
        # but NOT from longitude or latitude because it can be smaller!
        subDatasets = gdalDataset.GetSubDatasets()
        for subDataset in subDatasets:
            if ('longitude' not in subDataset[1]
                    and 'latitude' not in subDataset[1]):
                gdalSubDataset = gdal.Open(subDataset[0])
                break

        if title is 'GOCI Level-2 Data':
            # set GOCI projection parameters
            rasterXSize = 5567
            rasterYSize = 5685
            proj4 = '+proj=ortho +lat_0=36 +lon_0=130 units=m  +ellps=WGS84 +datum=WGS84 +no_defs'
            srs = osr.SpatialReference()
            srs.ImportFromProj4(proj4)
            projection = srs.ExportToWkt()
            geoTransform = (-1391500.0, 500.0, 0.0, 1349500.0, 0.0, -500.0)

            # create empty VRT dataset with georeference only
            self._init_from_dataset_params(rasterXSize, rasterYSize,
                                           geoTransform, projection)
        else:
            # create empty VRT dataset with geolocation only
            self._init_from_gdal_dataset(gdalSubDataset)

        # parts of dictionary for all Reflectances
        #dictRrs = {'wkv': 'surface_ratio_of_upwelling_radiance_emerging_from_sea_water_to_downwelling_radiative_flux_in_air', 'wavelength': '412'} }
        # dictionary for all possible bands
        allBandsDict = {
            'Rrs': {
                'src': {},
                'dst': {
                    'wkv':
                    'surface_ratio_of_upwelling_radiance_emerging_from_sea_water_to_downwelling_radiative_flux_in_air'
                }
            },
            'Kd': {
                'src': {},
                'dst': {
                    'wkv':
                    'volume_attenuation_coefficient_of_downwelling_radiative_flux_in_sea_water'
                }
            },
            'chlor_a': {
                'src': {},
                'dst': {
                    'wkv': 'mass_concentration_of_chlorophyll_a_in_sea_water',
                    'case': 'I'
                }
            },
            'cdom_index': {
                'src': {},
                'dst': {
                    'wkv':
                    'volume_absorption_coefficient_of_radiative_flux_in_sea_water_due_to_dissolved_organic_matter',
                    'case': 'II'
                }
            },
            'sst': {
                'src': {},
                'dst': {
                    'wkv': 'sea_surface_temperature'
                }
            },
            'sst4': {
                'src': {},
                'dst': {
                    'wkv': 'sea_surface_temperature'
                }
            },
            'l2_flags': {
                'src': {
                    'SourceType': 'SimpleSource',
                    'DataType': 4
                },
                'dst': {
                    'wkv': 'quality_flags',
                    'dataType': 4
                }
            },
            'qual_sst': {
                'src': {
                    'SourceType': 'SimpleSource',
                    'DataType': 4
                },
                'dst': {
                    'wkv': 'quality_flags',
                    'name': 'qual_sst',
                    'dataType': 4
                }
            },
            'qual_sst4': {
                'src': {
                    'SourceType': 'SimpleSource',
                    'DataType': 4
                },
                'dst': {
                    'wkv': 'quality_flags',
                    'name': 'qual_sst',
                    'dataType': 4
                }
            },
            'latitude': {
                'src': {},
                'dst': {
                    'wkv': 'latitude'
                }
            },
            'longitude': {
                'src': {},
                'dst': {
                    'wkv': 'longitude'
                }
            },
            'par': {
                'src': {},
                'dst': {
                    'wkv':
                    'downwelling_photosynthetic_photon_radiance_in_sea_water'
                }
            },
            'ipar': {
                'src': {},
                'dst': {
                    'wkv':
                    'instantaneous_downwelling_photosynthetic_photon_radiance_in_sea_water'
                }
            },
        }

        # loop through available bands and generate metaDict (non fixed)
        metaDict = []
        bandNo = 0
        for subDataset in subDatasets:
            # get sub dataset name
            subDatasetName = subDataset[1].split(' ')[1]
            self.logger.debug('Subdataset: %s' % subDataset[1])
            self.logger.debug('Subdataset name: "%s"' % subDatasetName)
            # get wavelength if applicable, get dataset name without wavelength
            try:
                wavelength = int(subDatasetName.split('_')[-1])
            except:
                wavelength = None
                subBandName = subDatasetName
            else:
                subBandName = subDatasetName.split('_')[0]

            self.logger.debug('subBandName, wavelength: %s %s' %
                              (subBandName, str(wavelength)))

            if subBandName in allBandsDict:
                # get name, slope, intercept
                self.logger.debug('name: %s' % subBandName)
                tmpSubDataset = gdal.Open(subDataset[0])
                tmpSubMetadata = tmpSubDataset.GetMetadata()
                slope = tmpSubMetadata.get('slope', '1')
                intercept = tmpSubMetadata.get('intercept', '0')
                self.logger.debug('slope, intercept: %s %s ' %
                                  (slope, intercept))
                # create meta entry
                metaEntry = {
                    'src': {
                        'SourceFilename': subDataset[0],
                        'sourceBand': 1,
                        'ScaleRatio': slope,
                        'ScaleOffset': intercept
                    },
                    'dst': {}
                }
                # add more to src
                for srcKey in allBandsDict[subBandName]['src']:
                    metaEntry['src'][srcKey] = (
                        allBandsDict[subBandName]['src'][srcKey])
                # add dst from allBandsDict
                for dstKey in allBandsDict[subBandName]['dst']:
                    metaEntry['dst'][dstKey] = (
                        allBandsDict[subBandName]['dst'][dstKey])

                # add wavelength, band name to dst
                if wavelength is not None:
                    metaEntry['dst']['suffix'] = str(wavelength)
                    metaEntry['dst']['wavelength'] = str(wavelength)

                # append band metadata to metaDict
                self.logger.debug('metaEntry: %d => %s' %
                                  (bandNo, str(metaEntry)))
                metaDict.append(metaEntry)
                bandNo += 1

                if subBandName == 'Rrs':
                    rrsSubDataset = subDataset[0]
                    metaEntryRrsw = {
                        'src': [{
                            'SourceFilename': subDataset[0],
                            'SourceBand': 1,
                            'ScaleRatio': slope,
                            'ScaleOffset': intercept,
                            'DataType': 6
                        }],
                        'dst': {
                            'wkv':
                            'surface_ratio_of_upwelling_radiance_emerging_from_sea_water_to_downwelling_radiative_flux_in_water',
                            'suffix':
                            str(wavelength),
                            'wavelength':
                            str(wavelength),
                            'PixelFunctionType':
                            'NormReflectanceToRemSensReflectance',
                        }
                    }

                    # append band metadata to metaDict
                    self.logger.debug('metaEntry: %d => %s' %
                                      (bandNo, str(metaEntryRrsw)))
                    metaDict.append(metaEntryRrsw)
                    bandNo += 1

        # add bands with metadata and corresponding values to the empty VRT
        self.create_bands(metaDict)

        # set TIME
        startYear = int(gdalMetadata['Start Year'])
        startDay = int(gdalMetadata['Start Day'])
        startMillisec = int(gdalMetadata['Start Millisec'])
        startDate = datetime(startYear, 1, 1) + timedelta(
            startDay - 1, 0, 0, startMillisec)
        # skip adding georeference for GOCI
        if title is 'GOCI Level-2 Data':
            return

        self._remove_geotransform()

        # add geolocation
        geoMeta = self.geolocation.data
        if len(geoMeta) > 0:
            self.dataset.SetMetadata(geoMeta, 'GEOLOCATION')

        # add GCPs
        geolocationMetadata = gdalSubDataset.GetMetadata('GEOLOCATION')
        xDatasetSource = geolocationMetadata['X_DATASET']
        xDataset = gdal.Open(xDatasetSource)

        yDatasetSource = geolocationMetadata['Y_DATASET']
        yDataset = gdal.Open(yDatasetSource)

        longitude = xDataset.ReadAsArray()
        latitude = yDataset.ReadAsArray()

        # estimate pixel/line step of the geolocation arrays
        pixelStep = int(
            ceil(
                float(gdalSubDataset.RasterXSize) /
                float(xDataset.RasterXSize)))
        lineStep = int(
            ceil(
                float(gdalSubDataset.RasterYSize) /
                float(xDataset.RasterYSize)))
        self.logger.debug('pixel/lineStep %f %f' % (pixelStep, lineStep))

        # ==== ADD GCPs and Pojection ====

        # estimate step of GCPs
        step0 = max(1, int(float(latitude.shape[0]) / GCP_COUNT))
        step1 = max(1, int(float(latitude.shape[1]) / GCP_COUNT))
        if str(title) == 'VIIRSN Level-2 Data':
            step0 = 64
        self.logger.debug('gcpCount: >%s<, %d %d %f %d %d', title,
                          latitude.shape[0], latitude.shape[1], GCP_COUNT,
                          step0, step1)

        # generate list of GCPs
        dx = .5
        dy = .5
        gcps = []
        k = 0
        center_lon = 0
        center_lat = 0
        for i0 in range(0, latitude.shape[0], step0):
            for i1 in range(0, latitude.shape[1], step1):
                # create GCP with X,Y,pixel,line from lat/lon matrices
                lon = float(longitude[i0, i1])
                lat = float(latitude[i0, i1])
                if (lon >= -180 and lon <= 180 and lat >= -90 and lat <= 90):
                    gcp = gdal.GCP(lon, lat, 0, i1 * pixelStep + dx,
                                   i0 * lineStep + dy)
                    self.logger.debug('%d %d %d %f %f', k, gcp.GCPPixel,
                                      gcp.GCPLine, gcp.GCPX, gcp.GCPY)
                    gcps.append(gcp)
                    center_lon += gcp.GCPX
                    center_lat += gcp.GCPY
                    k += 1

        # append GCPs and lat/lon projection to the vsiDataset
        self.dataset.SetGCPs(gcps, NSR().wkt)
        self._remove_geolocation()

        # reproject GCPs
        center_lon /= k
        center_lat /= k
        srs = '+proj=stere +datum=WGS84 +ellps=WGS84 +lon_0=%f +lat_0=%f +no_defs' % (
            center_lon, center_lat)
        self.reproject_gcps(srs)

        # use TPS for reprojection
        self.tps = True

        # add NansenCloud metadata
        self.dataset.SetMetadataItem(
            'time_coverage_start',
            (parse(gdalMetadata['time_coverage_start']).isoformat()))
        self.dataset.SetMetadataItem(
            'time_coverage_end',
            (parse(gdalMetadata['time_coverage_stop']).isoformat()))
        instrument = gdalMetadata['Sensor Name'][1:-1]
        platform = {'A': 'AQUA', 'T': 'TERRA'}[gdalMetadata['Sensor Name'][-1]]
        mm = pti.get_gcmd_instrument(instrument)
        ee = pti.get_gcmd_platform(platform)
        self.dataset.SetMetadataItem('instrument', json.dumps(mm))
        self.dataset.SetMetadataItem('platform', json.dumps(ee))
示例#9
0
    def __init__(self, filename, gdalDataset, gdalMetadata, **kwargs):
        ''' Create CSKS VRT '''

        if filename.split('/')[-1][0:4] != "CSKS":
            raise WrongMapperError

        # Get coordinates
        metadata = gdalMetadata['Estimated_Bottom_Left_Geodetic_Coordinates']
        bottom_left_lon = float(metadata.split(' ')[1])
        bottom_left_lat = float(metadata.split(' ')[0])
        metadata = gdalMetadata['Estimated_Bottom_Right_Geodetic_Coordinates']
        bottom_right_lon = float(metadata.split(' ')[1])
        bottom_right_lat = float(metadata.split(' ')[0])
        metadata = gdalMetadata['Estimated_Top_Left_Geodetic_Coordinates']
        top_left_lon = float(metadata.split(' ')[1])
        top_left_lat = float(metadata.split(' ')[0])
        metadata = gdalMetadata['Estimated_Top_Right_Geodetic_Coordinates']
        top_right_lon = float(metadata.split(' ')[1])
        top_right_lat = float(metadata.split(' ')[0])
        metadata = gdalMetadata['Scene_Centre_Geodetic_Coordinates']
        center_lon = float(metadata.split(' ')[1])
        center_lat = float(metadata.split(' ')[0])

        # Get sub-datasets
        subDatasets = gdalDataset.GetSubDatasets()

        # Get file names from dataset or subdataset
        if subDatasets.__len__() == 1:
            filenames = [filename]
        else:
            filenames = [f[0] for f in subDatasets]

        for i, elem in enumerate(filenames):
            if filenames[i][-3:] == 'QLK':
                filenames.pop(i)
        #print filenames

        subDataset = gdal.Open(filenames[0])

        # generate list of GCPs
        gcps = []
        # create GCP with X,Y,Z(?),pixel,line from lat/lon matrices
        gcp = gdal.GCP(float(bottom_left_lon), float(bottom_left_lat), 0, 0, 0)
        gcps.append(gcp)
        #self.logger.debug('%d %d %d %f %f', 0, gcp.GCPPixel, gcp.GCPLine,
        #                  gcp.GCPX, gcp.GCPY)
        gcp = gdal.GCP(float(bottom_right_lon), float(bottom_right_lat), 0,
                       subDataset.RasterXSize, 0)
        gcps.append(gcp)
        #self.logger.debug('%d %d %d %f %f', 1, gcp.GCPPixel, gcp.GCPLine,
        #                  gcp.GCPX, gcp.GCPY)
        gcp = gdal.GCP(float(top_left_lon), float(top_left_lat), 0, 0,
                       subDataset.RasterYSize)
        gcps.append(gcp)
        #self.logger.debug('%d %d %d %f %f', 2, gcp.GCPPixel, gcp.GCPLine,
        #                  gcp.GCPX, gcp.GCPY)
        gcp = gdal.GCP(float(top_right_lon), float(top_right_lat), 0,
                       subDataset.RasterXSize, subDataset.RasterYSize)
        gcps.append(gcp)
        #self.logger.debug('%d %d %d %f %f', 3, gcp.GCPPixel, gcp.GCPLine,
        #                  gcp.GCPX, gcp.GCPY)
        gcp = gdal.GCP(float(center_lon), float(center_lat), 0,
                       int(np.round(subDataset.RasterXSize / 2.)),
                       int(round(subDataset.RasterYSize / 2.)))
        gcps.append(gcp)
        #self.logger.debug('%d %d %d %f %f', 4, gcp.GCPPixel, gcp.GCPLine,
        #                  gcp.GCPX, gcp.GCPY)

        # append GCPs and lat/lon projection to the vsiDataset
        latlongSRS = osr.SpatialReference()
        latlongSRS.ImportFromProj4(
            "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
        latlongSRSWKT = latlongSRS.ExportToWkt()

        # create empty VRT dataset with geolocation only
        # x_size, y_size, geo_transform, projection, gcps=None, gcp_projection='', **kwargs
        self._init_from_dataset_params(
            subDataset.RasterXSize, subDataset.RasterYSize,
            (0, 1, 0, subDataset.RasterYSize, 0, -1), latlongSRSWKT, gcps,
            latlongSRSWKT)

        #print self.filename
        # Read all bands later
        #band='S01'
        #res='SBI'

        # Use only full size "original" datasets
        for i, elem in enumerate(filenames):
            if filenames[i][-3:] == 'SBI':
                # Add real and imaginary raw counts as bands
                src = {
                    'SourceFilename': filenames[i],
                    'SourceBand': 1,
                    'DataType': gdal.GDT_Int16
                }
                dst = {
                    'dataType':
                    gdal.GDT_Float32,
                    'name':
                    'RawCounts_%s_real' %
                    gdalMetadata[filenames[i][-7:-4] + '_Polarisation']
                }
                self.create_band(src, dst)

                src = {
                    'SourceFilename': filenames[i],
                    'SourceBand': 2,
                    'DataType': gdal.GDT_Int16
                }
                dst = {
                    'dataType':
                    gdal.GDT_Float32,
                    'name':
                    'RawCounts_%s_imaginary' %
                    gdalMetadata[filenames[i][-7:-4] + '_Polarisation']
                }
                self.create_band(src, dst)

                self.dataset.FlushCache()

        for i, elem in enumerate(filenames):
            if filenames[i][-3:] == 'SBI':
                # Calculate sigma0 scaling factor
                Rref = float(gdalMetadata['Reference_Slant_Range'])
                Rexp = float(gdalMetadata['Reference_Slant_Range_Exponent'])
                alphaRef = float(gdalMetadata['Reference_Incidence_Angle'])
                F = float(gdalMetadata['Rescaling_Factor'])
                K = float(gdalMetadata[filenames[i][-7:-4] +
                                       '_Calibration_Constant'])
                Ftot = Rref**(2. * Rexp)
                Ftot *= np.sin(alphaRef * np.pi / 180.0)
                Ftot /= F**2.
                Ftot /= K

                #print Ftot

                src = [{
                    'SourceFilename': self.filename,
                    'DataType': gdal.GDT_Float32,
                    'SourceBand': 2 * i + 1,
                    'ScaleRatio': np.sqrt(Ftot)
                }, {
                    'SourceFilename': self.filename,
                    'DataType': gdal.GDT_Float32,
                    'SourceBand': 2 * i + 2,
                    'ScaleRatio': np.sqrt(Ftot)
                }]
                dst = {
                    'wkv':
                    'surface_backwards_scattering_coefficient_of_radar_wave',
                    'PixelFunctionType':
                    'RawcountsToSigma0_CosmoSkymed_SBI',
                    'polarisation':
                    gdalMetadata[filenames[i][-7:-4] + '_Polarisation'],
                    'name':
                    'sigma0_%s' %
                    gdalMetadata[filenames[i][-7:-4] + '_Polarisation'],
                    'SatelliteID':
                    gdalMetadata['Satellite_ID'],
                    'dataType':
                    gdal.GDT_Float32
                }
                #'pass': gdalMetadata['']
                #         - I can't find this in the metadata...

                self.create_band(src, dst)

                self.dataset.FlushCache()

        self.dataset.SetMetadataItem(
            'time_coverage_start',
            parse_time(gdalMetadata['Scene_Sensing_Start_UTC']).isoformat())
        self.dataset.SetMetadataItem(
            'time_coverage_end',
            parse_time(gdalMetadata['Scene_Sensing_Stop_UTC']).isoformat())
示例#10
0
    def __init__(self,
                 filename,
                 gdalDataset,
                 gdalMetadata,
                 product_type='RVL',
                 GCP_COUNT=10,
                 **kwargs):
        '''
        Parameters
        ----------
        product_type: string
            Sentinel-1 level-2 ocean product type/component, i.e. ocean swell
            spectra (OSW), ocean wind field (OWI), or radial surface velocity
            (RVL) (RVL is the default)
        GCP_COUNT : int
            number of GCPs along each dimention
        '''
        fPathName, fExt = os.path.splitext(filename)

        # List of Sentinel-1 level-2 components
        unwanted_product_components = ['osw', 'owi', 'rvl']
        # Remove requested 'product_type' from list of unwanted
        unwanted_product_components.pop(
            unwanted_product_components.index(product_type.lower()))

        # Check if it is Sentinel-1 (or ASAR) level-2 (in S1 data format)
        if not gdalMetadata or not 'NC_GLOBAL' in gdalMetadata.keys():
            raise WrongMapperError(filename)
        else:
            title = gdalMetadata['NC_GLOBAL#TITLE']

        # Raise error if it is not Sentinel-1 format
        if not 'Sentinel-1' or 'ASA' in title:
            raise WrongMapperError(filename)

        metadata = {}
        for key, val in gdalMetadata.iteritems():
            new_key = key.split('#')[-1]
            metadata[new_key] = val

        subDatasets = gdalDataset.GetSubDatasets()
        filenames = [f[0] for f in subDatasets]

        rm_bands = []
        # Find all data that is not relevant for the selected product type
        # and get bands of longitude, latitude and zero doppler time
        for i, f in enumerate(filenames):
            if f.split(':')[-1][:3] in unwanted_product_components:
                rm_bands.append(i)
            if 'Lon' in f.split(':')[-1]:
                lon_ds = gdal.Open(f)
                rm_bands.append(i)
            if 'Lat' in f.split(':')[-1]:
                lat_ds = gdal.Open(f)
                rm_bands.append(i)
            if 'ZeroDopplerTime' in f.split(':')[-1]:
                zdt_ds = gdal.Open(f)
                rm_bands.append(i)
        # Remove bands in rm_bands from the list of bands to add to the Nansat
        # object
        filenames = [f for i, f in enumerate(filenames) if not i in rm_bands]
        #     (
        # 'Lon' in f.split(':')[-1] or
        # 'Lat' in f.split(':')[-1] or
        # 'ZeroDopplerTime' in f.split(':')[-1] )]

        # create empty VRT dataset
        self._init_from_gdal_dataset(gdal.Open(subDatasets[0][0]),
                                     metadata=metadata)

        # The zero Doppler time grid is 3-dimensional - the last dimension is a
        # char array with the time as year, month, day, etc.
        # Will not bother with it yet...
        #for iBand in range(zdt_ds.RasterCount):
        #    subBand = zdt_ds.GetRasterBand(iBand+1)

        XSize = lon_ds.RasterXSize
        YSize = lon_ds.RasterYSize

        # get projection from the lon and lat datasets
        longitude = lon_ds.ReadAsArray()
        latitude = lat_ds.ReadAsArray()
        # estimate step of GCPs
        step0 = max(1, int(float(latitude.shape[0]) / GCP_COUNT))
        step1 = max(1, int(float(latitude.shape[1]) / GCP_COUNT))
        self.logger.debug('gcpCount: >%s<, %d %d %f %d %d', title,
                          latitude.shape[0], latitude.shape[1], GCP_COUNT,
                          step0, step1)

        # estimate pixel/line step of the geolocation arrays
        pixelStep = 1
        lineStep = 1
        self.logger.debug('pixel/lineStep %f %f' % (pixelStep, lineStep))
        # generate list of GCPs
        dx = .5
        dy = .5
        gcps = []
        k = 0
        for i0 in range(0, latitude.shape[0], step0):
            for i1 in range(0, latitude.shape[1], step1):
                # create GCP with X,Y,pixel,line from lat/lon matrices
                lon = float(longitude[i0, i1])
                lat = float(latitude[i0, i1])
                if (lon >= -180 and lon <= 180 and lat >= -90 and lat <= 90):
                    gcp = gdal.GCP(lon, lat, 0, i1 * pixelStep + dx,
                                   i0 * lineStep + dy)
                    self.logger.debug('%d %d %d %f %f', k, gcp.GCPPixel,
                                      gcp.GCPLine, gcp.GCPX, gcp.GCPY)
                    gcps.append(gcp)
                    k += 1

        # append GCPs and lat/lon projection to the vsiDataset
        self.dataset.SetGCPs(gcps, NSR().wkt)

        # define band specific parameters
        metaDict = []
        geoFileDict = {}
        xDatasetSource = ''
        yDatasetSource = ''
        for i, filename in enumerate(filenames):
            band = gdal.Open(filename)

            # check that the band size is the same size as the latitude and
            # longitude grids
            if (band.RasterXSize != XSize or band.RasterYSize != YSize):
                raise IndexError(('Size of sub-dataset is different from size '
                                  'of longitude and latitude grids'))

            bandMetadata = band.GetMetadata()
            # generate src metadata
            src = {'SourceFilename': filename, 'SourceBand': 1}

            # Generate dst metadata
            short_name = filename.split(':')[-1]
            dst = {
                'name': short_name,
                'short_name': short_name,
                'long_name': bandMetadata[short_name + '#long_name'],
                'units': bandMetadata[short_name + '#units'],
                #'wkv': ,
            }

            # append band with src and dst dictionaries
            metaDict.append({'src': src, 'dst': dst})

        # add bands with metadata and corresponding values to the empty VRT
        self.create_bands(metaDict)

        metaDict = []
        for i in range(self.dataset.RasterCount):
            if 'Nrcs' in self.dataset.GetRasterBand(i +
                                                    1).GetMetadata()['name']:
                metaDict.append({
                    'src': {
                        'SourceFilename': (self.dataset.GetRasterBand(
                            i + 1).GetMetadata()['SourceFilename']),
                        'SourceBand':
                        1
                    },
                    'dst': {
                        'short_name':
                        'sigma0',
                        'wkv':
                        'surface_backwards_scattering_coefficient_of_radar_wave',
                        'PixelFunctionType':
                        'dB2pow',
                        'polarization':
                        (self.dataset.GetMetadata()['POLARISATION']),
                        'suffix':
                        self.dataset.GetMetadata()['POLARISATION'],
                        'dataType':
                        6,
                    }
                })

        # add bands with metadata and corresponding values to the empty VRT
        self.create_bands(metaDict)

        # set time
        self.dataset.SetMetadataItem(
            'time_coverage_start',
            parse(self.dataset.GetMetadata()
                  ['SOURCE_ACQUISITION_UTC_TIME']).isoformat())
示例#11
0
    def __init__(self,
                 filename,
                 gdalDataset,
                 gdalMetadata,
                 GCP_COUNT0=5,
                 GCP_COUNT1=20,
                 pixelStep=1,
                 lineStep=1,
                 **kwargs):
        ''' Create VIIRS VRT '''

        if not 'GMTCO_npp_' in filename:
            raise WrongMapperError(filename)
        ifiledir = os.path.split(filename)[0]
        ifiles = glob.glob(ifiledir + 'SVM??_npp_d*_obpg_ops.h5')
        ifiles.sort()

        if not IMPORT_SCIPY:
            raise NansatReadError(
                'VIIRS data cannot be read because scipy is not installed')

        viirsWavelengths = [
            None, 412, 445, 488, 555, 672, 746, 865, 1240, 1378, 1610, 2250,
            3700, 4050, 8550, 10736, 12013
        ]

        # create empty VRT dataset with geolocation only
        xDatasetSource = (
            'HDF5:"%s"://All_Data/VIIRS-MOD-GEO-TC_All/Longitude' % filename)
        xDatasetBand = 1
        xDataset = gdal.Open(xDatasetSource)
        self._init_from_gdal_dataset(xDataset)

        metaDict = []
        for ifile in ifiles:
            ifilename = os.path.split(ifile)[1]
            print(ifilename)
            bNumber = int(ifilename[3:5])
            print(bNumber)
            bWavelength = viirsWavelengths[bNumber]
            print(bWavelength)
            SourceFilename = (
                'HDF5:"%s"://All_Data/VIIRS-M%d-SDR_All/Radiance' %
                (ifile, bNumber))
            print(SourceFilename)
            metaEntry = {
                'src': {
                    'SourceFilename': SourceFilename,
                    'SourceBand': 1
                },
                'dst': {
                    'wkv': 'toa_outgoing_spectral_radiance',
                    'wavelength': str(bWavelength),
                    'suffix': str(bWavelength)
                }
            }
            metaDict.append(metaEntry)

        # add bands with metadata and corresponding values to the empty VRT
        self.create_bands(metaDict)

        xVRTArray = xDataset.ReadAsArray()
        xVRTArray = gaussian_filter(xVRTArray, 5).astype('float32')
        xVRT = VRT.from_array(xVRTArray)

        yDatasetSource = (
            'HDF5:"%s"://All_Data/VIIRS-MOD-GEO-TC_All/Latitude' % filename)
        yDatasetBand = 1
        yDataset = gdal.Open(yDatasetSource)
        yVRTArray = yDataset.ReadAsArray()
        yVRTArray = gaussian_filter(yVRTArray, 5).astype('float32')
        yVRT = VRT.from_array(yVRTArray)

        # estimate pixel/line step
        self.logger.debug('pixel/lineStep %f %f' % (pixelStep, lineStep))

        # ==== ADD GCPs and Pojection ====
        # get lat/lon matrices
        longitude = xVRT.dataset.GetRasterBand(1).ReadAsArray()
        latitude = yVRT.dataset.GetRasterBand(1).ReadAsArray()

        # estimate step of GCPs
        step0 = max(1, int(float(latitude.shape[0]) / GCP_COUNT0))
        step1 = max(1, int(float(latitude.shape[1]) / GCP_COUNT1))
        self.logger.debug('gcpCount: %d %d %d %d, %d %d', latitude.shape[0],
                          latitude.shape[1], GCP_COUNT0, GCP_COUNT1, step0,
                          step1)

        # generate list of GCPs
        gcps = []
        k = 0
        for i0 in range(0, latitude.shape[0], step0):
            for i1 in range(0, latitude.shape[1], step1):
                # create GCP with X,Y,pixel,line from lat/lon matrices
                lon = float(longitude[i0, i1])
                lat = float(latitude[i0, i1])
                if (lon >= -180 and lon <= 180 and lat >= -90 and lat <= 90):
                    gcp = gdal.GCP(lon, lat, 0, i1 * pixelStep, i0 * lineStep)
                    self.logger.debug('%d %d %d %f %f', k, gcp.GCPPixel,
                                      gcp.GCPLine, gcp.GCPX, gcp.GCPY)
                    gcps.append(gcp)
                    k += 1

        # append GCPs and lat/lon projection to the vsiDataset
        self.dataset.SetGCPs(gcps, NSR().wkt)

        # remove geolocation array
        self._remove_geolocation()
示例#12
0
    def __init__(self,
                 filename,
                 gdalDataset,
                 gdalMetadata,
                 GCP_COUNT=30,
                 **kwargs):
        ''' Create MODIS_L1 VRT '''

        #list of available modis names:resolutions
        modisResolutions = {
            'MYD02QKM': 250,
            'MOD02QKM': 250,
            'MYD02HKM': 500,
            'MOD02HKM': 500,
            'MYD021KM': 1000,
            'MOD021KM': 1000
        }

        #should raise error in case of not MODIS_L1
        try:
            mResolution = modisResolutions[gdalMetadata["SHORTNAME"]]
        except:
            raise WrongMapperError

        # get 1st subdataset and parse to VRT.__init__()
        # for retrieving geo-metadata
        try:
            gdalSubDataset = gdal.Open(gdalDataset.GetSubDatasets()[0][0])
        except (AttributeError, IndexError):
            raise WrongMapperError

        # create empty VRT dataset with geolocation only
        self._init_from_gdal_dataset(gdalSubDataset)

        subDsString = 'HDF4_EOS:EOS_SWATH:"%s":MODIS_SWATH_Type_L1B:%s'

        #provide all mappings
        metaDict250SF = ['EV_250_RefSB']

        metaDict250 = [{
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_250_RefSB'),
                'SourceBand': 1
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '645'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_250_RefSB'),
                'SourceBand': 2
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '858'
            }
        }]

        metaDict500SF = ['EV_250_Aggr500_RefSB', 'EV_500_RefSB']

        metaDict500 = [{
            'src': {
                'SourceFilename':
                subDsString % (filename, 'EV_250_Aggr500_RefSB'),
                'SourceBand': 1
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '645'
            }
        }, {
            'src': {
                'SourceFilename':
                subDsString % (filename, 'EV_250_Aggr500_RefSB'),
                'SourceBand': 2
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '858'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_500_RefSB'),
                'SourceBand': 1
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '469'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_500_RefSB'),
                'SourceBand': 2
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '555'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_500_RefSB'),
                'SourceBand': 3
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '1240'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_500_RefSB'),
                'SourceBand': 4
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '1640'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_500_RefSB'),
                'SourceBand': 5
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '2130'
            }
        }]

        metaDict1000SF = [
            'EV_250_Aggr1km_RefSB', 'EV_500_Aggr1km_RefSB', 'EV_1KM_RefSB',
            'EV_1KM_Emissive'
        ]

        metaDict1000 = [{
            'src': {
                'SourceFilename':
                subDsString % (filename, 'EV_250_Aggr1km_RefSB'),
                'SourceBand': 1
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '645'
            }
        }, {
            'src': {
                'SourceFilename':
                subDsString % (filename, 'EV_250_Aggr1km_RefSB'),
                'SourceBand': 2
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '858'
            }
        }, {
            'src': {
                'SourceFilename':
                subDsString % (filename, 'EV_500_Aggr1km_RefSB'),
                'SourceBand': 1
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '469'
            }
        }, {
            'src': {
                'SourceFilename':
                subDsString % (filename, 'EV_500_Aggr1km_RefSB'),
                'SourceBand': 2
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '555'
            }
        }, {
            'src': {
                'SourceFilename':
                subDsString % (filename, 'EV_500_Aggr1km_RefSB'),
                'SourceBand': 3
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '1240'
            }
        }, {
            'src': {
                'SourceFilename':
                subDsString % (filename, 'EV_500_Aggr1km_RefSB'),
                'SourceBand': 4
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '1640'
            }
        }, {
            'src': {
                'SourceFilename':
                subDsString % (filename, 'EV_500_Aggr1km_RefSB'),
                'SourceBand': 5
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '2130'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_RefSB'),
                'SourceBand': 1
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '412'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_RefSB'),
                'SourceBand': 2
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '443'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_RefSB'),
                'SourceBand': 3
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '488'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_RefSB'),
                'SourceBand': 4
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '531'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_RefSB'),
                'SourceBand': 5
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '551'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_RefSB'),
                'SourceBand': 6
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '667'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_RefSB'),
                'SourceBand': 7
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '667'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_RefSB'),
                'SourceBand': 8
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '678'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_RefSB'),
                'SourceBand': 9
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '678'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_RefSB'),
                'SourceBand': 10
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '748'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_RefSB'),
                'SourceBand': 11
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '869'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_RefSB'),
                'SourceBand': 12
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '905'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_RefSB'),
                'SourceBand': 13
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '936'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_RefSB'),
                'SourceBand': 14
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '940'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_RefSB'),
                'SourceBand': 15
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '1375'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 1
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '3750'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 2
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '3959'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 3
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '3959'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 4
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '4050'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 5
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '4465'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 6
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '4515'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 7
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '6715'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 8
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '7325'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 9
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '8550'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 10
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '9730'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 11
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '11030'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 12
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '12020'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 13
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '13335'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 14
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '13635'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 15
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '13935'
            }
        }, {
            'src': {
                'SourceFilename': subDsString % (filename, 'EV_1KM_Emissive'),
                'SourceBand': 16
            },
            'dst': {
                'wkv': 'toa_outgoing_spectral_radiance',
                'wavelength': '14235'
            }
        }]

        # get proper mapping depending on resolution
        metaDict = {
            250: metaDict250,
            500: metaDict500,
            1000: metaDict1000,
        }[mResolution]
        # get proper mapping depending on resolution
        metaDictSF = {
            250: metaDict250SF,
            500: metaDict500SF,
            1000: metaDict1000SF,
        }[mResolution]

        # read all scales/offsets
        rScales = {}
        rOffsets = {}
        for sf in metaDictSF:
            dsName = subDsString % (filename, sf)
            ds = gdal.Open(dsName)
            rScales[dsName] = list(
                map(float,
                    ds.GetMetadataItem('radiance_scales').split(',')))
            rOffsets[dsName] = list(
                map(float,
                    ds.GetMetadataItem('radiance_offsets').split(',')))
            self.logger.debug('radiance_scales: %s' % str(rScales))

        # add 'band_name' to 'parameters'
        for bandDict in metaDict:
            SourceFilename = bandDict['src']['SourceFilename']
            SourceBand = bandDict['src']['SourceBand']
            bandDict['dst']['suffix'] = bandDict['dst']['wavelength']
            scale = rScales[SourceFilename][SourceBand - 1]
            offset = rOffsets[SourceFilename][SourceBand - 1]
            self.logger.debug('band, scale, offset: %s_%d %s %s' %
                              (SourceFilename, SourceBand, scale, offset))
            bandDict['src']['ScaleRatio'] = scale
            bandDict['src']['ScaleOffset'] = offset

        # add bands with metadata and corresponding values to the empty VRT
        self.create_bands(metaDict)

        productDate = gdalMetadata["RANGEBEGINNINGDATE"]
        productTime = gdalMetadata["RANGEBEGINNINGTIME"]
        self._remove_geolocation()

        # set required metadata
        self.dataset.SetMetadataItem(
            'time_coverage_start',
            (parse(gdalMetadata["RANGEBEGINNINGDATE"] + ' ' +
                   gdalMetadata["RANGEBEGINNINGTIME"]).isoformat()))
        self.dataset.SetMetadataItem(
            'time_coverage_end',
            (parse(gdalMetadata["RANGEENDINGDATE"] + ' ' +
                   gdalMetadata["RANGEENDINGTIME"]).isoformat()))

        instrumentName = self.find_metadata(gdalMetadata,
                                            'ASSOCIATEDINSTRUMENTSHORTNAME',
                                            'MODIS')
        platformName = self.find_metadata(gdalMetadata,
                                          'ASSOCIATEDPLATFORMSHORTNAME',
                                          'AQUA')
        mm = pti.get_gcmd_instrument(instrumentName)
        ee = pti.get_gcmd_platform(platformName)
        self.dataset.SetMetadataItem('instrument', json.dumps(mm))
        self.dataset.SetMetadataItem('platform', json.dumps(ee))

        lonSubdataset = [
            subdatasetName[0]
            for subdatasetName in gdalDataset.GetSubDatasets()
            if 'Longitude' in subdatasetName[1]
        ][0]
        latSubdataset = [
            subdatasetName[0]
            for subdatasetName in gdalDataset.GetSubDatasets()
            if 'Latitude' in subdatasetName[1]
        ][0]
        lons = gdal.Open(lonSubdataset).ReadAsArray()
        lats = gdal.Open(latSubdataset).ReadAsArray()
        gcps = []
        rows = range(0, lons.shape[0], lons.shape[0] / GCP_COUNT)
        cols = range(0, lons.shape[1], lons.shape[1] / GCP_COUNT)
        factor = self.dataset.RasterYSize / lons.shape[0]
        for r in rows:
            for c in cols:
                gcps.append(
                    gdal.GCP(float(lons[r, c]), float(lats[r, c]), 0,
                             factor * c + 0.5, factor * r + 0.5))
        self.dataset.SetGCPs(gcps, self.dataset.GetGCPProjection())
        self.tps = True
示例#13
0
    def __init__(self,
                 filename,
                 gdalDataset,
                 gdalMetadata,
                 GCP_COUNT=10,
                 bandNames=['VNIR_Band1', 'VNIR_Band2', 'VNIR_Band3N'],
                 bandWaves=[560, 660, 820],
                 **kwargs):
        ''' Create VRT

        Parameters
        -----------
        GCP_COUNT : int
            number of GCPs along each dimention
        bandNames : list of string (band name)
        bandWaves : list of integer (waves corresponding to band name)

        Band name and waves
        --------------------
        'VNIR_Band3B' : 820, 'SWIR_Band4' : 1650, 'SWIR_Band5' : 2165,
        'SWIR_Band6' : 2205, 'SWIR_Band7' : 2260, 'SWIR_Band8' : 2330,
        'SWIR_Band9' : 2395, 'TIR_Band10' : 8300, 'TIR_Band11' : 8650,
        'TIR_Band12' : 9100, 'TIR_Band13' : 10600, 'TIR_Band14' : 11300

        '''
        # check if it is ASTER L1A
        try:
            assert 'AST_L1A_' in filename
            shortName = gdalMetadata['INSTRUMENTSHORTNAME']
            assert shortName == 'ASTER'
        except:
            raise WrongMapperError

        subDatasets = gdalDataset.GetSubDatasets()

        # find datasets for each band and generate metaDict
        metaDict = []
        bandDatasetMask = 'HDF4_EOS:EOS_SWATH:"%s":%s:ImageData'
        for bandName, bandWave in zip(bandNames, bandWaves):
            metaEntry = {
                'src': {
                    'SourceFilename': (bandDatasetMask % (filename, bandName)),
                    'SourceBand': 1,
                    'DataType': 6,
                },
                'dst': {
                    'wkv': 'toa_outgoing_spectral_radiance',
                    'wavelength': str(bandWave),
                    'suffix': str(bandWave),
                }
            }
            metaDict.append(metaEntry)

        # create empty VRT dataset with geolocation only
        gdalSubDataset = gdal.Open(metaDict[0]['src']['SourceFilename'])
        self._init_from_gdal_dataset(gdalSubDataset,
                                     metadata=gdalSubDataset.GetMetadata())

        # add bands with metadata and corresponding values to the empty VRT
        self.create_bands(metaDict)

        # find largest lon/lat subdatasets
        latShape0 = 0
        for subDataset in subDatasets:
            if 'Latitude' in subDataset[1]:
                ls = int(subDataset[1].strip().split('[')[1].split('x')[0])
                if ls >= latShape0:
                    latShape0 = ls
                    latSubDS = subDataset[0]
            if 'Longitude' in subDataset[1]:
                ls = int(subDataset[1].strip().split('[')[1].split('x')[0])
                if ls >= latShape0:
                    latShape0 = ls
                    lonSubDS = subDataset[0]
        self.logger.debug(latSubDS)
        self.logger.debug(lonSubDS)

        # get lat/lon matrices
        xDataset = gdal.Open(lonSubDS)
        yDataset = gdal.Open(latSubDS)

        longitude = xDataset.ReadAsArray()
        latitude = yDataset.ReadAsArray()

        step0 = longitude.shape[0] / GCP_COUNT
        step1 = longitude.shape[1] / GCP_COUNT

        # estimate pixel/line step
        pixelStep = int(
            ceil(
                float(gdalSubDataset.RasterXSize) /
                float(xDataset.RasterXSize)))
        lineStep = int(
            ceil(
                float(gdalSubDataset.RasterYSize) /
                float(xDataset.RasterYSize)))
        self.logger.debug('steps: %d %d %d %d' %
                          (step0, step1, pixelStep, lineStep))

        # generate list of GCPs
        gcps = []
        k = 0
        for i0 in range(0, latitude.shape[0], step0):
            for i1 in range(0, latitude.shape[1], step1):
                # create GCP with X,Y,pixel,line from lat/lon matrices
                lon = float(longitude[i0, i1])
                lat = float(latitude[i0, i1])
                if (lon >= -180 and lon <= 180 and lat >= -90 and lat <= 90):
                    gcp = gdal.GCP(lon, lat, 0, i1 * pixelStep, i0 * lineStep)
                    self.logger.debug(
                        '%d %d %d %f %f' %
                        (k, gcp.GCPPixel, gcp.GCPLine, gcp.GCPX, gcp.GCPY))
                    gcps.append(gcp)
                    k += 1
        # append GCPs and lat/lon projection to the vsiDataset
        self.dataset.SetGCPs(gcps, NSR().wkt)

        # Adding valid time to dataset
        self.dataset.SetMetadataItem(
            'time_coverage_start',
            parse(gdalMetadata['FIRSTPACKETTIME']).isoformat())
        self.dataset.SetMetadataItem(
            'time_coverage_end',
            parse(gdalMetadata['LASTPACKETTIME']).isoformat())

        mm = pti.get_gcmd_instrument('ASTER')
        ee = pti.get_gcmd_platform('TERRA')
        self.dataset.SetMetadataItem('instrument', json.dumps(mm))
        self.dataset.SetMetadataItem('platform', json.dumps(ee))