示例#1
0
def elbow_plot_handler_old(request):
    resp_data = dict()
    file_name = request.GET.get("file_name")
    column_header = request.GET.get("column_header")
    exclude_columns = request.GET.get("exclude_columns")
    print(column_header)
    if file_name:
        fs = FileStorage()
        file_full_path = fs.get_base_location() + file_name
        
        # If the file does exist, read data by panda and drop columns (if any)
        if fs.is_file(file_full_path):
            # Get data from file
            column_header_idx = None
            if column_header == "on":
                column_header_idx = 0;
               
            df = DataFrameUtil.convert_file_to_dataframe(file_full_path, header=column_header_idx) 
            # Drop column specified by user
            if exclude_columns:
                str_column_indexs = exclude_columns.split(",")
                # column_indexs = list(map(int, str_column_indexs))
                column_indexs = [int(i) - 1 for i in str_column_indexs]
                df = DataFrameUtil.drop_column_by_index(df, column_indexs)
                is_nan = np.any(np.isnan(df))
                is_finite = np.all(np.isfinite(df))
            
            # Standardize data
            X_scaled = PreProcessingUtil.standardize(df)
            
            # Get explain variance ratio
            pca_helper = PcaUtil()
            pca = pca_helper.get_fit_transfrom_pca(X_scaled)
            arr_variance_ratio = pca.explained_variance_ratio_
            
            # Prepare all tabs to display Plot, Table by Bokeh
            # Add ratio to bokeh line graph
            elbow_plot = draw_elbow_plot(arr_variance_ratio)
            
            # Describe data 
#             df_describe = df.describe().to_json()
           #  df_describe_table = draw_df_describe_table(df)
            
            # Add line to a panel
            tab1 = Panel(child=elbow_plot, title="Elbow Curve Plot")
            # tab2 = Panel(child=df_describe_table, title="Data Description")
            # Add a panel to tab
            tabs = Tabs(tabs=[ tab1 ])

            script, div = components(tabs)
            plots = { 'script': script, 'div': div}
            resp_data["bokeh_plot"] = plots
            # resp_data["data_describe"] = bokeh_df_describe_table
        else:
            resp_data["msg"] = "[ERROR] File is not found."
        
    else:
        resp_data['msg'] = "[ERROR] File name is invalid."
    
    return JsonResponse(resp_data) 
示例#2
0
def elbow_plot_handler(request):
    form = PcaPlotForm(request.POST, request.FILES)
    resp_data = dict();
    if form.is_valid():
         # Get input files
        data_file = form.cleaned_data["data_file"]
        df_input = DataFrameUtil.file_to_dataframe(data_file, header=None)
        
        X_scaled = PreProcessingUtil.standardize(df_input)
            
        # Get explain variance ratio
        pca_helper = PcaUtil()
        pca = pca_helper.get_fit_transfrom_pca(X_scaled)
        arr_variance_ratio = pca.explained_variance_ratio_
        
        # Prepare all tabs to display Plot, Table by Bokeh
        # Add ratio to bokeh line graph
        elbow_plot = draw_elbow_plot(arr_variance_ratio)

        # Add line to a panel
        tab1 = Panel(child=elbow_plot, title="Elbow Curve Plot")
        # tab2 = Panel(child=df_describe_table, title="Data Description")
        # Add a panel to tab
        tabs = Tabs(tabs=[ tab1 ])

        script, div = components(tabs)
        plots = { 'script': script, 'div': div}
        resp_data["bokeh_plot"] = plots
        
    else:
        resp_data[msg.ERROR] = escape(form._errors)
    
    return JsonResponse(resp_data)