示例#1
0
 def test_kw_property_indexing(self):
     cast = Cast(pressure=self.p,
                 temp=self.temp,
                 sal=self.sal,
                 name="Cruise station 7")
     self.assertEqual(cast.p["name"], "Cruise station 7")
     return
示例#2
0
 def test_concatenation(self):
     p = np.arange(1, 1001, 2)
     temp = 12. * np.exp(-.007 * p) - 14. * np.exp(-0.005 * (p + 100)) + 1.8
     sal = -13. * np.exp(-.01 * p) + 34.5
     cast2 = Cast(pres=p, temp=temp, sal=sal)
     cc = self.cast + cast2
     self.assertTrue(isinstance(cc, CastCollection))
     self.assertEqual(len(cc), 2)
     return
示例#3
0
 def setUp(self):
     p = np.arange(1, 1001, 2)
     temp = 10. * np.exp(-.008*p) - 15. * np.exp(-0.005*(p+100)) + 2.
     sal = -14. * np.exp(-.01*p) + 34.
     self.p = p
     self.temp = temp
     self.sal = sal
     dt = datetime.datetime(1993, 8, 18, 14, 42, 36)
     self.cast = Cast(pres=self.p, temp=self.temp, sal=self.sal, date=dt)
     self.ctd = CTDCast(self.p, self.sal, self.temp, date=dt)
     self.collection = CastCollection(self.ctd, self.ctd)
     return
示例#4
0
 def setUp(self):
     p = np.linspace(1, 999, 500)
     casts = []
     for i in range(10):
         cast = Cast(pres=p,
                     temp=2 * np.ones_like(p),
                     sal=30 * np.ones_like(p),
                     station=i,
                     val=abs(i - 5),
                     uniq_val=-i**2)
         casts.append(cast)
     self.cc = CastCollection(casts)
     return
示例#5
0
def ccmeanp(cc):
    if False in (np.all(cc[0]["pres"] == c["pres"]) for c in cc):
        raise ValueError("casts must share pressure levels")
    p = cc[0]["pres"]
    # shared keys are those in all casts, minus pressure and botdepth
    sharedkeys = set(cc[0].data.keys()).intersection(
        *[set(c.data.keys())
          for c in cc[1:]]).difference(set(("pres", "botdepth", "time")))
    data = dict()
    for key in sharedkeys:
        arr = np.vstack([c.data[key] for c in cc])
        data[key] = _nanmean(arr, axis=1)

    return Cast(p, **data)
示例#6
0
 def test_defray(self):
     lengths = np.arange(50, 71)
     casts = []
     for n in lengths:
         p = np.r_[np.arange(0, 250, 5),
                   np.arange(250, 250 + 5 * (n - 50), 5)]
         t = np.ones(n) * 10.0
         s = np.ones(n) * 34.0
         cast = Cast(pres=p, temp=t, sal=s)
         casts.append(cast)
     defrayed_casts = CastCollection(casts).defray()
     for cast in defrayed_casts:
         self.assertEqual(len(cast), 70)
     return
示例#7
0
    def test_nearest_to(self):
        casts = []
        for i in range(10):
            casts.append(
                Cast(pressure=[1, 2, 3],
                     temperature=[5, 6, 7],
                     coordinates=(-30.0 + i, 10.0 - 2 * i)))

        cc = CastCollection(casts)
        pt = Point((-26.2, 2.1), crs=LonLatWGS84)
        nearest, dist = cc.nearest_to_point(pt)
        self.assertEqual(nearest.coordinates.vertex, (-26.0, 2.0))
        self.assertAlmostEqual(dist, 24845.9422, places=4)
        return
示例#8
0
    def test_eofs(self):
        pres = np.arange(1, 300)
        casts = [
            Cast(depth=np.arange(1, 300), theta=np.sin(pres * i * np.pi / 300))
            for i in range(3)
        ]
        cc = CastCollection(casts)
        structures, lamb, eofs = narwhal.analysis.eofs(cc, key="theta")

        self.assertAlmostEqual(np.mean(np.abs(structures["theta_eof1"])),
                               0.634719360307)
        self.assertAlmostEqual(np.mean(np.abs(structures["theta_eof2"])),
                               0.363733575635)
        self.assertAlmostEqual(np.mean(np.abs(structures["theta_eof3"])),
                               0.350665870142)
        self.assertTrue(
            np.allclose(lamb, [87.27018523, 40.37800904, 2.02016724]))
        return
示例#9
0
def ccmeans(cc):
    """ Calculate a mean Cast along isopycnals from a CastCollection. """
    c0 = max(cc, key=lambda c: c.nvalid())
    s0 = c0["sigma"]
    sharedkeys = set(c0.data.keys()).intersection(
        *[set(c.data.keys())
          for c in cc[1:]]).difference(set(("pres", "botdepth", "time")))
    nanmask = reduce(lambda a, b: a * b, [c.nanmask() for c in cc])
    data = dict()
    for key in sharedkeys:
        arr = np.nan * np.empty((len(cc), len(c0["pres"])))
        arr[0, :] = c0[key]
        for j, c in enumerate(cc[1:]):
            s = np.convolve(c["sigma"], np.ones(3) / 3.0, mode="same")
            arr[j + 1, :] = np.interp(s0, s, c[key])
        data[key] = _nanmean(arr, axis=1)
        data[key][nanmask] = np.nan

    return Cast(copy.copy(c0["pres"]), **data)
示例#10
0
 def test_read_property_using_alias(self):
     cast = Cast(pressure=self.p, temp=self.temp, sal=self.sal, time="late")
     self.assertEqual(cast.p["time"], "late")
     return
示例#11
0
 def test_add_property_using_alias(self):
     cast = Cast(pres=self.p, temp=self.temp, sal=self.sal)
     cast.p["comment"] = "performed bottle cast #23"
     self.assertEqual(cast.properties["comment"][-2:], "23")
     return