示例#1
0
def generator(hparams,
              inputs,
              targets,
              targets_present,
              is_training,
              is_validating,
              reuse=None):
    """Define the Generator graph.

    G will now impute tokens that have been masked from the input seqeunce.
  """
    tf.logging.info(
        'Undirectional generative model is not a useful model for this MaskGAN '
        'because future context is needed.  Use only for debugging purposes.')
    config = get_config()
    config.keep_prob = [
        hparams.gen_nas_keep_prob_0, hparams.gen_nas_keep_prob_1
    ]
    configs.print_config(config)

    init_scale = config.init_scale
    initializer = tf.random_uniform_initializer(-init_scale, init_scale)

    with tf.variable_scope('gen', reuse=reuse, initializer=initializer):
        # Neural architecture search cell.
        cell = custom_cell.Alien(config.hidden_size)

        if is_training:
            [h2h_masks, _, _, output_mask
             ] = variational_dropout.generate_variational_dropout_masks(
                 hparams, config.keep_prob)
        else:
            output_mask = None

        cell_gen = custom_cell.GenericMultiRNNCell([cell] * config.num_layers)
        initial_state = cell_gen.zero_state(FLAGS.batch_size, tf.float32)

        with tf.variable_scope('rnn'):
            sequence, logits, log_probs = [], [], []
            embedding = tf.get_variable(
                'embedding', [FLAGS.vocab_size, hparams.gen_rnn_size])
            softmax_w = tf.matrix_transpose(embedding)
            softmax_b = tf.get_variable('softmax_b', [FLAGS.vocab_size])

            rnn_inputs = tf.nn.embedding_lookup(embedding, inputs)

            if is_training and FLAGS.keep_prob < 1:
                rnn_inputs = tf.nn.dropout(rnn_inputs, FLAGS.keep_prob)

            for t in xrange(FLAGS.sequence_length):
                if t > 0:
                    tf.get_variable_scope().reuse_variables()

                # Input to the model is the first token to provide context.  The
                # model will then predict token t > 0.
                if t == 0:
                    # Always provide the real input at t = 0.
                    state_gen = initial_state
                    rnn_inp = rnn_inputs[:, t]

                # If the input is present, read in the input at t.
                # If the input is not present, read in the previously generated.
                else:
                    real_rnn_inp = rnn_inputs[:, t]
                    fake_rnn_inp = tf.nn.embedding_lookup(embedding, fake)

                    # While validating, the decoder should be operating in teacher
                    # forcing regime.  Also, if we're just training with cross_entropy
                    # use teacher forcing.
                    if is_validating or (is_training
                                         and FLAGS.gen_training_strategy
                                         == 'cross_entropy'):
                        rnn_inp = real_rnn_inp
                    else:
                        rnn_inp = tf.where(targets_present[:, t - 1],
                                           real_rnn_inp, fake_rnn_inp)

                if is_training:
                    state_gen = list(state_gen)
                    for layer_num, per_layer_state in enumerate(state_gen):
                        per_layer_state = LSTMTuple(
                            per_layer_state[0],
                            per_layer_state[1] * h2h_masks[layer_num])
                        state_gen[layer_num] = per_layer_state

                # RNN.
                rnn_out, state_gen = cell_gen(rnn_inp, state_gen)

                if is_training:
                    rnn_out = output_mask * rnn_out

                logit = tf.matmul(rnn_out, softmax_w) + softmax_b

                # Real sample.
                real = targets[:, t]

                categorical = tf.contrib.distributions.Categorical(
                    logits=logit)
                fake = categorical.sample()
                log_prob = categorical.log_prob(fake)

                # Output for Generator will either be generated or the input.
                #
                # If present:   Return real.
                # If not present:  Return fake.
                output = tf.where(targets_present[:, t], real, fake)

                # Add to lists.
                sequence.append(output)
                log_probs.append(log_prob)
                logits.append(logit)

            # Produce the RNN state had the model operated only
            # over real data.
            real_state_gen = initial_state
            for t in xrange(FLAGS.sequence_length):
                tf.get_variable_scope().reuse_variables()

                rnn_inp = rnn_inputs[:, t]

                # RNN.
                rnn_out, real_state_gen = cell_gen(rnn_inp, real_state_gen)

            final_state = real_state_gen

    return (tf.stack(sequence, axis=1), tf.stack(logits, axis=1),
            tf.stack(log_probs, axis=1), initial_state, final_state)
示例#2
0
def discriminator(hparams, sequence, is_training, reuse=None):
    """Define the Discriminator graph."""
    tf.logging.info(
        'Undirectional Discriminative model is not a useful model for this '
        'MaskGAN because future context is needed.  Use only for debugging '
        'purposes.')
    sequence = tf.cast(sequence, tf.int32)

    if FLAGS.dis_share_embedding:
        assert hparams.dis_rnn_size == hparams.gen_rnn_size, (
            'If you wish to share Discriminator/Generator embeddings, they must be'
            ' same dimension.')
        with tf.variable_scope('gen/rnn', reuse=True):
            embedding = tf.get_variable(
                'embedding', [FLAGS.vocab_size, hparams.gen_rnn_size])

    config = get_config()
    config.keep_prob = [
        hparams.dis_nas_keep_prob_0, hparams.dis_nas_keep_prob_1
    ]
    configs.print_config(config)

    with tf.variable_scope('dis', reuse=reuse):
        # Neural architecture search cell.
        cell = custom_cell.Alien(config.hidden_size)

        if is_training:
            [h2h_masks, _, _, output_mask
             ] = variational_dropout.generate_variational_dropout_masks(
                 hparams, config.keep_prob)
        else:
            output_mask = None

        cell_dis = custom_cell.GenericMultiRNNCell([cell] * config.num_layers)
        state_dis = cell_dis.zero_state(FLAGS.batch_size, tf.float32)

        with tf.variable_scope('rnn') as vs:
            predictions = []
            if not FLAGS.dis_share_embedding:
                embedding = tf.get_variable(
                    'embedding', [FLAGS.vocab_size, hparams.dis_rnn_size])

            rnn_inputs = tf.nn.embedding_lookup(embedding, sequence)

            if is_training and FLAGS.keep_prob < 1:
                rnn_inputs = tf.nn.dropout(rnn_inputs, FLAGS.keep_prob)

            for t in xrange(FLAGS.sequence_length):
                if t > 0:
                    tf.get_variable_scope().reuse_variables()

                rnn_in = rnn_inputs[:, t]

                if is_training:
                    state_dis = list(state_dis)
                    for layer_num, per_layer_state in enumerate(state_dis):
                        per_layer_state = LSTMTuple(
                            per_layer_state[0],
                            per_layer_state[1] * h2h_masks[layer_num])
                        state_dis[layer_num] = per_layer_state

                # RNN.
                rnn_out, state_dis = cell_dis(rnn_in, state_dis)

                if is_training:
                    rnn_out = output_mask * rnn_out

                # Prediction is linear output for Discriminator.
                pred = tf.contrib.layers.linear(rnn_out, 1, scope=vs)

                predictions.append(pred)
    predictions = tf.stack(predictions, axis=1)
    return tf.squeeze(predictions, axis=2)
示例#3
0
def gen_encoder(hparams, inputs, targets_present, is_training, reuse=None):
    """Define the Encoder graph.


  Args:
    hparams:  Hyperparameters for the MaskGAN.
    inputs:  tf.int32 Tensor of shape [batch_size, sequence_length] with tokens
      up to, but not including, vocab_size.
    targets_present:  tf.bool Tensor of shape [batch_size, sequence_length] with
      True representing the presence of the target.
    is_training:  Boolean indicating operational mode (train/inference).
    reuse (Optional):   Whether to reuse the variables.

  Returns:
    Tuple of (hidden_states, final_state).
  """
    config = get_config()
    configs.print_config(config)
    # We will use the same variable from the decoder.
    if FLAGS.seq2seq_share_embedding:
        with tf.variable_scope('decoder/rnn'):
            embedding = tf.get_variable(
                'embedding', [FLAGS.vocab_size, hparams.gen_rnn_size])

    with tf.variable_scope('encoder', reuse=reuse):
        # Neural architecture search cell.
        cell = custom_cell.Alien(config.hidden_size)

        if is_training:
            [h2h_masks, h2i_masks, _, output_mask
             ] = variational_dropout.generate_variational_dropout_masks(
                 hparams, config.keep_prob)
        else:
            h2i_masks, output_mask = None, None

        cell = custom_cell.GenericMultiRNNCell([cell] * config.num_layers)

        initial_state = cell.zero_state(FLAGS.batch_size, tf.float32)

        # Add a missing token for inputs not present.
        real_inputs = inputs
        masked_inputs = transform_input_with_is_missing_token(
            inputs, targets_present)

        with tf.variable_scope('rnn'):
            hidden_states = []

            # Split the embedding into two parts so that we can load the PTB
            # weights into one part of the Variable.
            if not FLAGS.seq2seq_share_embedding:
                embedding = tf.get_variable(
                    'embedding', [FLAGS.vocab_size, hparams.gen_rnn_size])
            missing_embedding = tf.get_variable('missing_embedding',
                                                [1, hparams.gen_rnn_size])
            embedding = tf.concat([embedding, missing_embedding], axis=0)

            real_rnn_inputs = tf.nn.embedding_lookup(embedding, real_inputs)
            masked_rnn_inputs = tf.nn.embedding_lookup(embedding,
                                                       masked_inputs)

            if is_training and FLAGS.keep_prob < 1:
                masked_rnn_inputs = tf.nn.dropout(masked_rnn_inputs,
                                                  FLAGS.keep_prob)

            state = initial_state
            for t in xrange(FLAGS.sequence_length):
                if t > 0:
                    tf.get_variable_scope().reuse_variables()

                rnn_inp = masked_rnn_inputs[:, t]

                if is_training:
                    state = list(state)
                    for layer_num, per_layer_state in enumerate(state):
                        per_layer_state = LSTMTuple(
                            per_layer_state[0],
                            per_layer_state[1] * h2h_masks[layer_num])
                        state[layer_num] = per_layer_state

                rnn_out, state = cell(rnn_inp, state, h2i_masks)

                if is_training:
                    rnn_out = output_mask * rnn_out

                hidden_states.append(rnn_out)
            final_masked_state = state
            hidden_states = tf.stack(hidden_states, axis=1)

            # Produce the RNN state had the model operated only
            # over real data.
            real_state = initial_state
            for t in xrange(FLAGS.sequence_length):
                tf.get_variable_scope().reuse_variables()

                # RNN.
                rnn_inp = real_rnn_inputs[:, t]
                rnn_out, real_state = cell(rnn_inp, real_state)
            final_state = real_state

    return (hidden_states, final_masked_state), initial_state, final_state
示例#4
0
def generator(hparams,
              inputs,
              targets,
              targets_present,
              is_training,
              is_validating,
              reuse=None):
  """Define the Generator graph.

    G will now impute tokens that have been masked from the input seqeunce.
  """
  tf.logging.info(
      'Undirectional generative model is not a useful model for this MaskGAN '
      'because future context is needed.  Use only for debugging purposes.')
  config = get_config()
  config.keep_prob = [hparams.gen_nas_keep_prob_0, hparams.gen_nas_keep_prob_1]
  configs.print_config(config)

  init_scale = config.init_scale
  initializer = tf.random_uniform_initializer(-init_scale, init_scale)

  with tf.variable_scope('gen', reuse=reuse, initializer=initializer):
    # Neural architecture search cell.
    cell = custom_cell.Alien(config.hidden_size)

    if is_training:
      [h2h_masks, _, _,
       output_mask] = variational_dropout.generate_variational_dropout_masks(
           hparams, config.keep_prob)
    else:
      output_mask = None

    cell_gen = custom_cell.GenericMultiRNNCell([cell] * config.num_layers)
    initial_state = cell_gen.zero_state(FLAGS.batch_size, tf.float32)

    with tf.variable_scope('rnn'):
      sequence, logits, log_probs = [], [], []
      embedding = tf.get_variable('embedding',
                                  [FLAGS.vocab_size, hparams.gen_rnn_size])
      softmax_w = tf.matrix_transpose(embedding)
      softmax_b = tf.get_variable('softmax_b', [FLAGS.vocab_size])

      rnn_inputs = tf.nn.embedding_lookup(embedding, inputs)

      if is_training and FLAGS.keep_prob < 1:
        rnn_inputs = tf.nn.dropout(rnn_inputs, FLAGS.keep_prob)

      for t in xrange(FLAGS.sequence_length):
        if t > 0:
          tf.get_variable_scope().reuse_variables()

        # Input to the model is the first token to provide context.  The
        # model will then predict token t > 0.
        if t == 0:
          # Always provide the real input at t = 0.
          state_gen = initial_state
          rnn_inp = rnn_inputs[:, t]

        # If the input is present, read in the input at t.
        # If the input is not present, read in the previously generated.
        else:
          real_rnn_inp = rnn_inputs[:, t]
          fake_rnn_inp = tf.nn.embedding_lookup(embedding, fake)

          # While validating, the decoder should be operating in teacher
          # forcing regime.  Also, if we're just training with cross_entropy
          # use teacher forcing.
          if is_validating or (is_training and
                               FLAGS.gen_training_strategy == 'cross_entropy'):
            rnn_inp = real_rnn_inp
          else:
            rnn_inp = tf.where(targets_present[:, t - 1], real_rnn_inp,
                               fake_rnn_inp)

        if is_training:
          state_gen = list(state_gen)
          for layer_num, per_layer_state in enumerate(state_gen):
            per_layer_state = LSTMTuple(
                per_layer_state[0], per_layer_state[1] * h2h_masks[layer_num])
            state_gen[layer_num] = per_layer_state

        # RNN.
        rnn_out, state_gen = cell_gen(rnn_inp, state_gen)

        if is_training:
          rnn_out = output_mask * rnn_out

        logit = tf.matmul(rnn_out, softmax_w) + softmax_b

        # Real sample.
        real = targets[:, t]

        categorical = tf.contrib.distributions.Categorical(logits=logit)
        fake = categorical.sample()
        log_prob = categorical.log_prob(fake)

        # Output for Generator will either be generated or the input.
        #
        # If present:   Return real.
        # If not present:  Return fake.
        output = tf.where(targets_present[:, t], real, fake)

        # Add to lists.
        sequence.append(output)
        log_probs.append(log_prob)
        logits.append(logit)

      # Produce the RNN state had the model operated only
      # over real data.
      real_state_gen = initial_state
      for t in xrange(FLAGS.sequence_length):
        tf.get_variable_scope().reuse_variables()

        rnn_inp = rnn_inputs[:, t]

        # RNN.
        rnn_out, real_state_gen = cell_gen(rnn_inp, real_state_gen)

      final_state = real_state_gen

  return (tf.stack(sequence, axis=1), tf.stack(logits, axis=1), tf.stack(
      log_probs, axis=1), initial_state, final_state)
示例#5
0
def discriminator(hparams, sequence, is_training, reuse=None):
  """Define the Discriminator graph."""
  tf.logging.info(
      'Undirectional Discriminative model is not a useful model for this '
      'MaskGAN because future context is needed.  Use only for debugging '
      'purposes.')
  sequence = tf.cast(sequence, tf.int32)

  if FLAGS.dis_share_embedding:
    assert hparams.dis_rnn_size == hparams.gen_rnn_size, (
        'If you wish to share Discriminator/Generator embeddings, they must be'
        ' same dimension.')
    with tf.variable_scope('gen/rnn', reuse=True):
      embedding = tf.get_variable('embedding',
                                  [FLAGS.vocab_size, hparams.gen_rnn_size])

  config = get_config()
  config.keep_prob = [hparams.dis_nas_keep_prob_0, hparams.dis_nas_keep_prob_1]
  configs.print_config(config)

  with tf.variable_scope('dis', reuse=reuse):
    # Neural architecture search cell.
    cell = custom_cell.Alien(config.hidden_size)

    if is_training:
      [h2h_masks, _, _,
       output_mask] = variational_dropout.generate_variational_dropout_masks(
           hparams, config.keep_prob)
    else:
      output_mask = None

    cell_dis = custom_cell.GenericMultiRNNCell([cell] * config.num_layers)
    state_dis = cell_dis.zero_state(FLAGS.batch_size, tf.float32)

    with tf.variable_scope('rnn') as vs:
      predictions = []
      if not FLAGS.dis_share_embedding:
        embedding = tf.get_variable('embedding',
                                    [FLAGS.vocab_size, hparams.dis_rnn_size])

      rnn_inputs = tf.nn.embedding_lookup(embedding, sequence)

      if is_training and FLAGS.keep_prob < 1:
        rnn_inputs = tf.nn.dropout(rnn_inputs, FLAGS.keep_prob)

      for t in xrange(FLAGS.sequence_length):
        if t > 0:
          tf.get_variable_scope().reuse_variables()

        rnn_in = rnn_inputs[:, t]

        if is_training:
          state_dis = list(state_dis)
          for layer_num, per_layer_state in enumerate(state_dis):
            per_layer_state = LSTMTuple(
                per_layer_state[0], per_layer_state[1] * h2h_masks[layer_num])
            state_dis[layer_num] = per_layer_state

        # RNN.
        rnn_out, state_dis = cell_dis(rnn_in, state_dis)

        if is_training:
          rnn_out = output_mask * rnn_out

        # Prediction is linear output for Discriminator.
        pred = tf.contrib.layers.linear(rnn_out, 1, scope=vs)

        predictions.append(pred)
  predictions = tf.stack(predictions, axis=1)
  return tf.squeeze(predictions, axis=2)
示例#6
0
def gen_encoder(hparams, inputs, targets_present, is_training, reuse=None):
  """Define the Encoder graph.


  Args:
    hparams:  Hyperparameters for the MaskGAN.
    inputs:  tf.int32 Tensor of shape [batch_size, sequence_length] with tokens
      up to, but not including, vocab_size.
    targets_present:  tf.bool Tensor of shape [batch_size, sequence_length] with
      True representing the presence of the target.
    is_training:  Boolean indicating operational mode (train/inference).
    reuse (Optional):   Whether to reuse the variables.

  Returns:
    Tuple of (hidden_states, final_state).
  """
  config = get_config()
  configs.print_config(config)
  # We will use the same variable from the decoder.
  if FLAGS.seq2seq_share_embedding:
    with tf.variable_scope('decoder/rnn'):
      embedding = tf.get_variable('embedding',
                                  [FLAGS.vocab_size, hparams.gen_rnn_size])

  with tf.variable_scope('encoder', reuse=reuse):
    # Neural architecture search cell.
    cell = custom_cell.Alien(config.hidden_size)

    if is_training:
      [h2h_masks, h2i_masks, _,
       output_mask] = variational_dropout.generate_variational_dropout_masks(
           hparams, config.keep_prob)
    else:
      h2i_masks, output_mask = None, None

    cell = custom_cell.GenericMultiRNNCell([cell] * config.num_layers)

    initial_state = cell.zero_state(FLAGS.batch_size, tf.float32)

    # Add a missing token for inputs not present.
    real_inputs = inputs
    masked_inputs = transform_input_with_is_missing_token(
        inputs, targets_present)

    with tf.variable_scope('rnn'):
      hidden_states = []

      # Split the embedding into two parts so that we can load the PTB
      # weights into one part of the Variable.
      if not FLAGS.seq2seq_share_embedding:
        embedding = tf.get_variable('embedding',
                                    [FLAGS.vocab_size, hparams.gen_rnn_size])
      missing_embedding = tf.get_variable('missing_embedding',
                                          [1, hparams.gen_rnn_size])
      embedding = tf.concat([embedding, missing_embedding], axis=0)

      real_rnn_inputs = tf.nn.embedding_lookup(embedding, real_inputs)
      masked_rnn_inputs = tf.nn.embedding_lookup(embedding, masked_inputs)

      if is_training and FLAGS.keep_prob < 1:
        masked_rnn_inputs = tf.nn.dropout(masked_rnn_inputs, FLAGS.keep_prob)

      state = initial_state
      for t in xrange(FLAGS.sequence_length):
        if t > 0:
          tf.get_variable_scope().reuse_variables()

        rnn_inp = masked_rnn_inputs[:, t]

        if is_training:
          state = list(state)
          for layer_num, per_layer_state in enumerate(state):
            per_layer_state = LSTMTuple(
                per_layer_state[0], per_layer_state[1] * h2h_masks[layer_num])
            state[layer_num] = per_layer_state

        rnn_out, state = cell(rnn_inp, state, h2i_masks)

        if is_training:
          rnn_out = output_mask * rnn_out

        hidden_states.append(rnn_out)
      final_masked_state = state
      hidden_states = tf.stack(hidden_states, axis=1)

      # Produce the RNN state had the model operated only
      # over real data.
      real_state = initial_state
      for t in xrange(FLAGS.sequence_length):
        tf.get_variable_scope().reuse_variables()

        # RNN.
        rnn_inp = real_rnn_inputs[:, t]
        rnn_out, real_state = cell(rnn_inp, real_state)
      final_state = real_state

  return (hidden_states, final_masked_state), initial_state, final_state