示例#1
0
    def test_estimate(self):
        print "Testing parameter estimation of GammaP distribution ..."
        sys.stdout.flush()
        myu = 10 * np.random.rand(1)[0]
        mys = 10 * np.random.rand(1)[0]
        myp = 1.5 * np.random.rand() + .5
        p = Distributions.GammaP({'u': myu, 's': mys, 'p': myp})
        dat = p.sample(10000)
        p = Distributions.GammaP()
        p.estimate(dat)


        self.assertFalse(np.abs(p.param['u'] - myu) > self.TolParam,\
            'Difference in Shape parameter for Gamma distribution greater than ' + str(self.TolParam['u']))
        self.assertFalse(np.abs(p.param['s'] - mys) > self.TolParam,\
            'Difference in Scale parameter for Gamma distribution greater than ' + str(self.TolParam['s']))
        self.assertFalse(np.abs(p.param['p'] - mys) > self.TolParam,\
            'Difference in Scale parameter for Gamma distribution greater than ' + str(self.TolParam['p']))
示例#2
0
 def test_derivatives(self):
     print "Testing derivatives w.r.t. data ... "
     sys.stdout.flush()
     myu = 10 * np.random.rand(1)[0]
     mys = 10 * np.random.rand(1)[0]
     myp = 1.5 * np.random.rand() + .5
     p = Distributions.GammaP({'u': myu, 's': mys, 'p': myp})
     dat = p.sample(100)
     h = 1e-8
     tol = 1e-4
     y = np.array(dat.X) + h
     df = p.dldx(dat)
     df2 = (p.loglik(Data(y)) - p.loglik(dat)) / h
     self.assertFalse(
         np.max(np.abs(df - df2)) > tol,
         'Difference in derivative of log-likelihood for GammaP greater than '
         + str(tol))