示例#1
0
文件: merge.py 项目: tomka/fafbseg-py
def merge_into_catmaid(x,
                       target_instance,
                       tag,
                       min_node_overlap=4,
                       min_overlap_size=1,
                       merge_limit=1,
                       min_upload_size=0,
                       min_upload_nodes=1,
                       update_radii=True,
                       import_tags=False,
                       label_joins=True,
                       sid_from_nodes=True,
                       mesh=None):
    """Merge neuron into target CATMAID instance.

    This function will attempt to:

        1. Find fragments in ``target_instance`` that overlap with ``x``
           using whatever segmentation data source you have set using
           ``fafbseg.use_...``.
        2. Generate a union of these fragments and ``x``.
        3. Make a differential upload of the union leaving existing nodes
           untouched.
        4. Join uploaded and existing tracings into a single continuous
           neuron. This will also upload connectors but no node tags.

    Parameters
    ----------
    x :                 pymaid.CatmaidNeuron/List | navis.TreeNeuron/List
                        Neuron(s)/fragment(s) to commit to ``target_instance``.
    target_instance :   pymaid.CatmaidInstance
                        Target Catmaid instance to commit the neuron to.
    tag :               str
                        A tag to be added as part of a ``{URL} upload {tag}``
                        annotation. This should be something identifying your
                        group - e.g. ``tag='WTCam'`` for the Cambridge Wellcome
                        Trust group.
    min_node_overlap :  int, optional
                        Minimal overlap between `x` and a potentially
                        overlapping neuron in ``target_instance``. If
                        the fragment has less total nodes than `min_overlap`,
                        the threshold will be lowered to:
                        ``min_overlap = min(min_overlap, fragment.n_nodes)``
    min_overlap_size :  int, optional
                        Minimum node count for potentially overlapping neurons
                        in ``target_instance``. Use this to e.g. exclude
                        single-node synapse orphans.
    merge_limit :       int, optional
                        Distance threshold [um] for collapsing nodes of ``x``
                        into overlapping fragments in target instance. Decreasing
                        this will help if your neuron has complicated branching
                        patterns (e.g. uPN dendrites) at the cost of potentially
                        creating duplicate parallel tracings in the neuron's
                        backbone.
    min_upload_size :   float, optional
                        Minimum size in microns for upload of new branches:
                        branches found in ``x`` but not in the overlapping
                        neuron(s) in ``target_instance`` are uploaded in
                        fragments. Use this parameter to exclude small branches
                        that might not be worth the additional review time.
    min_upload_nodes :  int, optional
                        As ``min_upload_size`` but for number of nodes instead
                        of cable length.
    update_radii :      bool, optional
                        If True, will use radii in ``x`` to update radii of
                        overlapping fragments if (and only if) the nodes
                        do not currently have a radius (i.e. radius<=0).
    import_tags :       bool, optional
                        If True, will import node tags. Please note that this
                        will NOT import tags of nodes that have been collapsed
                        into manual tracings.
    label_joins :       bool, optional
                        If True, will label nodes at which old and new
                        tracings have been joined with tags ("Joined from ..."
                        and "Joined with ...") and with a lower confidence of
                        1.
    sid_from_nodes :    bool, optional
                        If True and the to-be-merged neuron has a "skeleton_id"
                        column it will be used to set the ``source_id`` upon
                        uploading new branches. This is relevant if your neuron
                        is a virtual chimera of several neurons: in order to
                        preserve provenance (i.e. correctly associating each
                        node with a ``source_id`` origin).
    mesh :              Volume | MeshNeuron | mesh-like object | list thereof
                        Mesh representation of ``x``. If provided, will use to
                        improve merging. If ``x`` is a list of neurons, must
                        provide a mesh for each of them.

    Returns
    -------
    Nothing
                        If all went well.
    dict
                        If something failed, returns server responses with
                        error logs.

    Examples
    --------
    Setup

    >>> import fafbseg
    >>> import pymaid

    >>> # Set up connections to manual and autoseg CATMAID
    >>> manual = pymaid.CatmaidInstance('URL', 'HTTP_USER', 'HTTP_PW', 'API_TOKEN')
    >>> auto = pymaid.CatmaidInstance('URL', 'HTTP_USER', 'HTTP_PW', 'API_TOKEN')

    >>> # Set a segmentation data source
    >>> fafbseg.use_google_storage("https://storage.googleapis.com/fafb-ffn1-20190805/segmentation")

    Merge a neuron from autoseg into v14

    >>> # Fetch the autoseg neuron to transfer to v14
    >>> x = pymaid.get_neuron(267355161, remote_instance=auto)

    >>> # Get the neuron's annotations so that they can be merged too
    >>> x.get_annotations(remote_instance=auto)

    >>> # Start the commit
    >>> # See online documentation for video of merge process
    >>> resp = fafbseg.merge_neuron(x, target_instance=manual)

    """
    if not isinstance(x, navis.NeuronList):
        if not isinstance(x, navis.TreeNeuron):
            raise TypeError('Expected TreeNeuron/List, got "{}"'.format(
                type(x)))
        x = navis.NeuronList(x)

    if not isinstance(mesh, (np.ndarray, list)):
        if isinstance(mesh, type(None)):
            mesh = [mesh] * len(x)
        else:
            mesh = [mesh]

    if len(mesh) != len(x):
        raise ValueError(f'Got {len(mesh)} meshes for {len(x)} neurons.')

    # Make a copy - in case we make any changes to the neurons
    # (like changing duplicate skeleton IDs)
    x = x.copy()

    if not isinstance(tag, (str, type(None))):
        raise TypeError('Tag must be string, got "{}"'.format(type(tag)))

    # Check user permissions
    perm = target_instance.fetch(target_instance.make_url('permissions'))
    requ_perm = ['can_annotate', 'can_annotate_with_token', 'can_import']
    miss_perm = [
        p for p in requ_perm
        if target_instance.project_id not in perm[0].get(p, [])
    ]

    if miss_perm:
        msg = 'You lack permissions: {}. Please contact an administrator.'
        raise PermissionError(msg.format(', '.join(miss_perm)))

    pymaid.set_loggers('WARNING')

    # Throttle requests just to play it safe
    # On a bad connection one might have to decrease max_threads further
    target_instance.max_threads = min(target_instance.max_threads, 50)

    # For user convenience, we will do all the stuff that needs user
    # interaction first and then run the automatic merge:

    # Start by find all overlapping fragments
    overlapping = []
    for n, m in tqdm(zip(x, mesh),
                     desc='Pre-processing neuron(s)',
                     leave=False,
                     disable=not use_pbars,
                     total=len(x)):
        ol = find_fragments(n,
                            min_node_overlap=min_node_overlap,
                            min_nodes=min_overlap_size,
                            mesh=m,
                            remote_instance=target_instance)

        if ol:
            # Add number of samplers to each neuron
            n_samplers = pymaid.get_sampler_counts(
                ol, remote_instance=target_instance)

            for nn in ol:
                nn.sampler_count = n_samplers[str(nn.id)]

        overlapping.append(ol)

    # Now have the user confirm merges before we actually make them
    viewer = navis.Viewer(title='Confirm merges')
    viewer.clear()
    overlap_cnf = []
    base_neurons = []
    try:
        for n, ol in zip(x, overlapping):
            # This asks user a bunch of questions prior to merge and upload
            ol, bn = confirm_overlap(n, ol, viewer=viewer)
            overlap_cnf.append(ol)
            base_neurons.append(bn)
    except BaseException:
        raise
    finally:
        viewer.close()

    for i, (n, ol, bn, m) in enumerate(zip(x, overlap_cnf, base_neurons,
                                           mesh)):
        print(f'Processing neuron "{n.name}" ({n.id}) [{i}/{len(x)}]',
              flush=True)
        # If no overlapping neurons proceed with just uploading.
        if not ol:
            print(
                'No overlapping fragments found. Uploading without merging...',
                end='',
                flush=True)
            resp = pymaid.upload_neuron(n,
                                        import_tags=import_tags,
                                        import_annotations=True,
                                        import_connectors=True,
                                        remote_instance=target_instance)
            if 'error' in resp:
                return resp

            # Add annotations
            _ = __merge_annotations(n, resp['skeleton_id'], tag,
                                    target_instance)

            msg = '\nNeuron "{}" successfully uploaded to target instance as "{}" #{}'
            print(msg.format(n.name, n.name, resp['skeleton_id']), flush=True)
            continue

        # Check if there is a duplicate skeleton ID between the to-be-merged
        # neuron and the to-merge-into neurons
        original_skid = None
        if n.id in ol.id:
            print('Fixing duplicate skeleton IDs.', flush=True)
            # Keep track of old skid
            original_skid = n.id
            # Skeleton ID must stay convertable to integer
            n.id = str(random.randint(1, 1000000))
            n._clear_temp_attr()

        # Check if there are any duplicate node IDs between neuron ``x`` and the
        # overlapping fragments and create new IDs for ``x`` if necessary
        duplicated = n.nodes[n.nodes.node_id.isin(ol.nodes.node_id.values)]
        if not duplicated.empty:
            print('Duplicate node IDs found. Regenerating node tables... ',
                  end='',
                  flush=True)
            max_ix = max(ol.nodes.node_id.max(), n.nodes.node_id.max()) + 1
            new_ids = range(max_ix, max_ix + duplicated.shape[0])
            id_map = {
                old: new
                for old, new in zip(duplicated.node_id, new_ids)
            }
            n.nodes['node_id'] = n.nodes.node_id.map(
                lambda n: id_map.get(n, n))
            n.nodes['parent_id'] = n.nodes.parent_id.map(
                lambda n: id_map.get(n, n))
            if n.has_connectors:
                n.connectors['node_id'] = n.connectors.node_id.map(
                    lambda n: id_map.get(n, n))
            n._clear_temp_attr()
            print('Done.', flush=True)

        # Combining the fragments into a single neuron is actually non-trivial:
        # 1. Collapse nodes of our input neuron `x` into within-distance nodes
        #    in the overlapping fragments (never the other way around!)
        # 2. At the same time keep connectivity (i.e. edges) of the input-neuron
        # 3. Keep track of the nodes' provenance (i.e. the contractions)
        #
        # In addition there are a lot of edge-cases to consider. For example:
        # - multiple nodes collapsing onto the same node
        # - nodes of overlapping fragments that are close enough to be collapsed
        #   (e.g. orphan synapse nodes)

        # Keep track of original skeleton IDs
        for a in ol + n:
            # Original skeleton of each node
            a.nodes['origin_skeletons'] = a.id
            if a.has_connectors:
                # Original skeleton of each connector
                a.connectors['origin_skeletons'] = a.id

        print('Generating union of all fragments... ', end='', flush=True)
        union, new_edges, collapsed_into = collapse_nodes(n,
                                                          ol,
                                                          limit=merge_limit,
                                                          base_neuron=bn,
                                                          mesh=m)
        print('Done.', flush=True)

        print('Extracting new nodes to upload... ', end='', flush=True)
        # Now we have to break the neuron into "new" fragments that we can upload
        # First get the new and old nodes
        new_nodes = union.nodes[union.nodes.origin_skeletons ==
                                n.id].node_id.values
        old_nodes = union.nodes[
            union.nodes.origin_skeletons != n.id].node_id.values

        # Now remove the already existing nodes from the union
        only_new = navis.subset_neuron(union, new_nodes)

        # And then break into continuous fragments for upload
        frags = navis.break_fragments(only_new)
        print('Done.', flush=True)

        # Also get the new edges we need to generate
        to_stitch = new_edges[~new_edges.parent_id.isnull()]

        # We need this later -> no need to compute this for every uploaded fragment
        cond1b = to_stitch.node_id.isin(old_nodes)
        cond2b = to_stitch.parent_id.isin(old_nodes)

        # Now upload each fragment and keep track of new node IDs
        tn_map = {}
        for f in tqdm(frags,
                      desc='Merging new arbors',
                      leave=False,
                      disable=not use_pbars):
            # In cases of complete merging into existing neurons, the fragment
            # will have no nodes
            if f.n_nodes < 1:
                continue

            # Check if fragment is a "linker" and as such can not be skipped
            lcond1 = np.isin(f.nodes.node_id.values, new_edges.node_id.values)
            lcond2 = np.isin(f.nodes.node_id.values,
                             new_edges.parent_id.values)

            # If not linker, check skip conditions
            if sum(lcond1) + sum(lcond2) <= 1:
                if f.cable_length < min_upload_size:
                    continue
                if f.n_nodes < min_upload_nodes:
                    continue

            # Collect origin info for this neuron if it's a CatmaidNeuron
            if isinstance(n, pymaid.CatmaidNeuron):
                source_info = {'source_type': 'segmentation'}

                if not sid_from_nodes or 'origin_skeletons' not in f.nodes.columns:
                    # If we had to change the skeleton ID due to duplication, make
                    # sure to pass the original skid as source ID
                    if original_skid:
                        source_info['source_id'] = int(original_skid)
                    else:
                        source_info['source_id'] = int(n.id)
                else:
                    if f.nodes.origin_skeletons.unique().shape[0] == 1:
                        skid = f.nodes.origin_skeletons.unique()[0]
                    else:
                        print(
                            'Warning: uploading chimera fragment with multiple '
                            'skeleton IDs! Using largest contributor ID.')
                        # Use the skeleton ID that has the most nodes
                        by_skid = f.nodes.groupby('origin_skeletons').x.count()
                        skid = by_skid.sort_values(
                            ascending=False).index.values[0]

                    source_info['source_id'] = int(skid)

                if not isinstance(getattr(n, '_remote_instance', None),
                                  type(None)):
                    source_info[
                        'source_project_id'] = n._remote_instance.project_id
                    source_info['source_url'] = n._remote_instance.server
            else:
                # Unknown source
                source_info = {}

            resp = pymaid.upload_neuron(f,
                                        import_tags=import_tags,
                                        import_annotations=False,
                                        import_connectors=True,
                                        remote_instance=target_instance,
                                        **source_info)

            # Stop if there was any error while uploading
            if 'error' in resp:
                return resp

            # Collect old -> new node IDs
            tn_map.update(resp['node_id_map'])

            # Now check if we can create any of the new edges by joining nodes
            # Both treenode and parent ID have to be either existing nodes or
            # newly uploaded
            cond1a = to_stitch.node_id.isin(tn_map)
            cond2a = to_stitch.parent_id.isin(tn_map)

            to_gen = to_stitch.loc[(cond1a | cond1b) & (cond2a | cond2b)]

            # Join nodes
            for node in to_gen.itertuples():
                # Make sure our base_neuron always come out as winner on top
                if node.node_id in bn.nodes.node_id.values:
                    winner, looser = node.node_id, node.parent_id
                else:
                    winner, looser = node.parent_id, node.node_id

                # We need to map winner and looser to the new node IDs
                winner = tn_map.get(winner, winner)
                looser = tn_map.get(looser, looser)

                # And now do the join
                resp = pymaid.join_nodes(winner,
                                         looser,
                                         no_prompt=True,
                                         tag_nodes=label_joins,
                                         remote_instance=target_instance)

                # See if there was any error while uploading
                if 'error' in resp:
                    print('Skipping joining nodes '
                          '{} and {}: {} - '.format(node.node_id,
                                                    node.parent_id,
                                                    resp['error']))
                    # Skip changing confidences
                    continue

                # Pop this edge from new_edges and from condition
                new_edges.drop(node.Index, inplace=True)
                cond1b.drop(node.Index, inplace=True)
                cond2b.drop(node.Index, inplace=True)

                # Change node confidences at new join
                if label_joins:
                    new_conf = {looser: 1}
                    resp = pymaid.update_node_confidence(
                        new_conf, remote_instance=target_instance)

        # Add annotations
        if n.has_annotations:
            _ = __merge_annotations(n, bn, tag, target_instance)

        # Update node radii
        if update_radii and 'radius' in n.nodes.columns and np.all(
                n.nodes.radius):
            print('Updating radii of existing nodes... ', end='', flush=True)
            resp = update_node_radii(source=n,
                                     target=ol,
                                     remote_instance=target_instance,
                                     limit=merge_limit,
                                     skip_existing=True)
            print('Done.', flush=True)

        print(
            'Neuron "{}" successfully merged into target instance as "{}" #{}'.
            format(n.name, bn.name, bn.id),
            flush=True)

    return
示例#2
0
def merge_flywire_neuron(id,
                         target_instance,
                         tag,
                         flywire_dataset='production',
                         assert_id_match=True,
                         drop_soma_hairball=True,
                         **kwargs):
    """Merge flywire neuron into FAFB.

    This function (1) fetches a mesh from flywire, (2) turns it into a skeleton,
    (3) maps the coordinates to FAFB 14 and (4) runs ``fafbseg.merge_neuron``
    to merge the skeleton into CATMAID. See Examples below on how to run these
    individual steps yourself if you want more control over e.g. how the mesh
    is skeletonized.

    Parameters
    ----------
    id  :                int
                         ID of the flywire neuron you want to merge.
    target_instance :    pymaid.CatmaidInstance
                         Instance to merge the neuron into into.
    tag :                str
                         You personal tag to add as annotation once import into
                         CATMAID is complete.
    dataset :            str | CloudVolume
                         Against which flywire dataset to query::
                            - "production" (current production dataset, fly_v31)
                            - "sandbox" (i.e. fly_v26)
    assert_id_match :    bool
                         If True, will check if skeleton nodes map to the
                         correct segment ID and if not will move them back into
                         the segment. This is potentially very slow!
    drop_soma_hairball : bool
                         If True, we will try to drop the hairball that is
                         typically created inside the soma.
    **kwargs
                Keyword arguments are passed on to ``fafbseg.merge_neuron``.

    Examples
    --------
    # Import flywire neuron
    >>> _ = merge_flywire_neuron(id=720575940610453042,
    ...                          cvpath='graphene://https://prodv1.flywire-daf.com/segmentation/1.0/fly_v26',
    ...                          target_instance=manual,
    ...                          tag='WTCam')

    """
    if not sk:
        raise ImportError('Must install skeletor: pip3 install skeletor')

    vol = parse_volume(flywire_dataset)

    # Make sure this is a valid integer
    id = int(id)

    # Download the mesh
    mesh = vol.mesh.get(id, deduplicate_chunk_boundaries=False)[id]

    # Convert to neuron
    n_fw, simp, cntr = skeletonize_neuron(
        mesh,
        drop_soma_hairball=drop_soma_hairball,
        dataset=flywire_dataset,
        assert_id_match=assert_id_match)

    # Confirm
    viewer = navis.Viewer(title='Confirm skeletonization')
    # Make sure viewer is actually visible and cleared
    viewer.show()
    viewer.clear()
    # Add skeleton
    viewer.add(n_fw, color='r')

    msg = """
    Please carefully inspect the skeletonization of the flywire mesh.
    Hit ENTER to proceed if happy or CTRL-C to cancel.
    """

    # Add mesh last - otherwise it might mask out other objects despite alpha
    viewer.add(navis.MeshNeuron(mesh), color='w', alpha=.2)

    try:
        _ = input(msg)
    except KeyboardInterrupt:
        raise KeyboardInterrupt('Merge process aborted by user.')
    except BaseException:
        raise
    finally:
        viewer.close()

    # Xform to FAFB
    n_fafb = xform.flywire_to_fafb14(n_fw,
                                     on_fail='raise',
                                     coordinates='nm',
                                     inplace=False)
    mesh_fafb = xform.flywire_to_fafb14(tm.Trimesh(mesh.vertices, mesh.faces),
                                        on_fail='raise',
                                        coordinates='nm',
                                        inplace=False)

    # Heal neuron
    n_fafb = navis.heal_fragmented_neuron(n_fafb)

    # Merge neuron
    return merge_into_catmaid(n_fafb,
                              target_instance=target_instance,
                              tag=tag,
                              mesh=mesh_fafb,
                              **kwargs)
示例#3
0
def visualizeLaplaceWeights(mesh, quantile=.01, weights=None, cmap='seismic', viewer=None, **kwargs):
    """Visualize Laplacian weights.

    Requires ``navis`` to be installed.

    Parameters
    ----------
    mesh :      trimesh.Trimesh
                Mesh to plot the weights for.
    quantile :  float [0-1]
                The vast majority of weights will be close to the mean while the
                interesting outliers will be very few. By default we are showing
                the top and bottom 0.1 quantile (i.e. the 10% highest and
                lowest values).
    weights :   np.ndarray, optional
                Laplacian weights. If not provided, will be computed.

    """
    mesh = make_trimesh(mesh, validate=False)

    try:
        import navis
        import vispy as vp
        import matplotlib.pyplot as plt
    except ImportError:
        raise ImportError('This function requires navis to be installed:\n'
                          '  pip3 install navis')

    if not isinstance(weights, np.ndarray):
        weights = laplacian_cotangent(mesh,
                                      #symmetric=False,
                                      normalized=True)

    if not isinstance(weights, spsp.coo_matrix):
        weights = spsp.coo_matrix(weights)

    # Get data (upper triangle only -> is supposed to be symmetrical)
    # Also removes diagonal (k=1)
    triu = spsp.triu(weights, k=1)
    row, col, data = triu.row, triu.col, triu.data

    if quantile:
        top = data >= np.quantile(data, 1-quantile)
        bottom = data <= np.quantile(data, quantile)
        row = row[top | bottom]
        col = col[top | bottom]
        data = data[top | bottom]

    # Weights are computed per edge
    co1, co2 = mesh.vertices[row], mesh.vertices[col]
    segments = np.hstack((co1, co2)).reshape(co1.shape[0] * 2, 3)

    # Generate colors
    cmap = plt.get_cmap(cmap)
    weights_norm = (data - data.min()) / (data.max() - data.min())

    colors = cmap(weights_norm)
    alpha = np.clip(np.fabs(weights_norm - .5) * 2, a_min=0.01, a_max=1)

    # We need to provide one color per vertex
    colors = np.hstack((colors, colors)).reshape(colors.shape[0] * 2, 4)
    #alpha = np.hstack((alpha, alpha)).reshape(alpha.shape[0] * 2, 1)

    # Combine color with alpha
    #colors = np.hstack((colors[:, :3], alpha))

    t = vp.scene.visuals.Line(pos=segments,
                              color=colors,
                              # Can only be used with method 'agg'
                              width=kwargs.get('linewidth', 1),
                              connect='segments',
                              antialias=kwargs.get('antialias', True),
                              method=kwargs.get('method', 'gl'))

    if not viewer:
        viewer = navis.get_viewer()
    if not viewer:
        viewer = navis.Viewer()

    viewer.add(t)

    return t
示例#4
0
def confirm_overlap(x, fragments, viewer=None):
    """Show dialogs to confirm overlapping fragments."""
    print('{}: {} overlapping fragments found'.format(x.name, len(fragments)))
    if fragments:
        fragments.sort_values('n_nodes')
        # Have user inspect fragments
        # Show larger fragments in 3d viewer
        if any(fragments.n_nodes > 10):
            # Generate a summary
            large_frags = fragments[fragments.n_nodes > 10]
            s = large_frags.summary(add_props=['overlap_score', 'id'])[[
                'name', 'id', 'n_nodes', 'n_connectors', 'overlap_score'
            ]]
            # Show and let user decide which ones to merge
            if not viewer:
                viewer = navis.Viewer(title='Check overlap')
            # Make sure viewer is actually visible and cleared
            viewer.show()
            viewer.clear()
            # Add original skeleton
            viewer.add(x, color='w')
            viewer.add(large_frags)
            viewer.picking = True
            viewer._picking_text.visible = True
            viewer.show_legend = True

            # Print summary
            print('Large (>10 nodes) overlapping fragments:')
            print(s.to_string(index=False, show_dimensions=False))

            msg = """
            Please check these large fragments for overlap and deselect
            neurons that you DO NOT want to have merged by clicking on
            their names in the legend.
            Hit ENTER when you are ready to proceed or CTRL-C to cancel.
            """

            try:
                _ = input(msg)
            except KeyboardInterrupt:
                raise KeyboardInterrupt('Merge process aborted by user.')
            except BaseException:
                raise

            # Remove deselected fragments
            # Mind you not all fragments are on viewer - this is why we remove
            # neurons that has been hidden
            fragments = fragments[~np.isin(fragments.id, viewer.invisible)]

    # Now ask for smaller fragments via CLI
    if fragments:
        s = fragments.summary(
            add_props=['overlap_score', 'sampler_count', 'id'])[[
                'name', 'id', 'n_nodes', 'n_connectors', 'sampler_count',
                'overlap_score'
            ]]

        # Ask user which neuron should be merged
        msg = """
        Please check the fragments that potentially overlap with the input neuron (white).
        Deselect those that should NOT be merged using the arrows keys.
        Hit ENTER when you are ready to proceed or CTRL-C to abort
        """
        print(msg)

        msg = s.to_string(index=False).split('\n')[0]

        s_str = s.to_string(index=False, show_dimensions=False, header=False)
        choices = [(v, i) for i, v in enumerate(s_str.split('\n'))]
        q = [
            inquirer.Checkbox(name='selection',
                              message=msg,
                              choices=choices,
                              default=list(range(len(choices))))
        ]

        # Ask the question
        selection = inquirer.prompt(q, theme=GreenPassion()).get('selection')

        if isinstance(selection, type(None)):
            raise SystemExit('Merge process aborted by user.')

        # Remove fragments that are not selected
        if selection:
            fragments = fragments[selection]
        else:
            # If no selection, remove all neurons from the list
            fragments = fragments[:0]

    # If no overlapping fragments (either none from the start or all removed
    # during filtering) ask if just proceed with upload
    if not fragments:
        print('No overlapping fragments to be merged into in target instance.')
        msg = 'Proceed with just uploading this neuron?'
        q = [inquirer.Confirm(name='confirm', message=msg)]
        confirm = inquirer.prompt(q, theme=GreenPassion()).get('confirm')

        if not confirm:
            raise SystemExit('Merge process aborted by user.')

        base_neuron = None
    # If any fragments left, ask for base neuron
    else:
        # Ask user which neuron to use as merge target
        s = fragments.summary(
            add_props=['overlap_score', 'sampler_count', 'id'])[[
                'name', 'id', 'n_nodes', 'n_connectors', 'sampler_count',
                'overlap_score'
            ]]

        msg = """
        Above fragments and your input neuron will be merged into a single neuron.
        All annotations will be preserved but only the neuron used as merge target
        will keep its name and skeleton ID.
        Please select the neuron you would like to use as merge target!
        """ + s.to_string(index=False).split('\n')[0]
        print(msg)

        s_str = s.to_string(index=False, show_dimensions=False, header=False)
        choices = [(v, i) for i, v in enumerate(s_str.split('\n'))]
        q = [
            inquirer.List(name='base_neuron',
                          message='Choose merge target',
                          choices=choices)
        ]
        # Ask the question
        bn = inquirer.prompt(q, theme=GreenPassion()).get('base_neuron')

        if isinstance(bn, type(None)):
            raise ValueError("Merge aborted by user")

        base_neuron = fragments[bn]

        # Some safeguards:
        # Check if we would delete any samplers
        cond1 = s.id != base_neuron.id
        cond2 = s.sampler_count > 0
        has_sampler = s[cond1 & cond2]
        if not has_sampler.empty:
            print("Merging selected fragments would delete reconstruction "
                  "samplers on the following neurons:")
            print(has_sampler)
            q = [inquirer.Confirm(name='confirm', message='Proceed anyway?')]
            confirm = inquirer.prompt(q, theme=GreenPassion())['confirm']

            if not confirm:
                raise SystemExit('Merge process aborted by user.')

        # Check if we would generate any 2-soma neurons
        has_soma = [not isinstance(s, type(None)) for s in fragments.soma]
        if sum(has_soma) > 1:
            print('Merging the selected fragments would generate a neuron  '
                  'with two somas!')
            q = [inquirer.Confirm(name='confirm', message='Proceed anyway?')]
            confirm = inquirer.prompt(q, theme=GreenPassion())['confirm']

            if not confirm:
                raise SystemExit('Merge process aborted by user.')

    return fragments, base_neuron
示例#5
0
def merge_flywire_neuron(id,
                         target_instance,
                         tag,
                         flywire_dataset='production',
                         assert_id_match=True,
                         drop_soma_hairball=True,
                         **kwargs):
    """Merge FlyWire neuron into FAFB CATMAID.

    This function (1) fetches a mesh from FlyWire, (2) turns it into a skeleton,
    (3) maps the coordinates to FAFB v14 space and (4) runs
    ``fafbseg.merge_neuron`` to merge the skeleton into CATMAID.

    Disclaimer:

     1. It is your responsibility to make sure that your export of FlyWire data
        does not conflict with the FlyWire community guidelines. Mass export of
        reconstructions is not OK!
     2. As with all imports to CATMAID, the importing user is responsible for
        the quality of the imported skeleton and to make sure no existing
        tracings (including annotations) are negatively impacted.

    Parameters
    ----------
    id  :                int
                         ID of the FlyWire neuron you want to merge.
    target_instance :    pymaid.CatmaidInstance
                         Instance to merge the neuron into into.
    tag :                str
                         You personal tag to add as annotation once import into
                         CATMAID is complete.
    dataset :            str | CloudVolume
                         Against which FlyWire dataset to query::
                            - "production" (current production dataset, fly_v31)
                            - "sandbox" (i.e. fly_v26)
    assert_id_match :    bool
                         If True, will check if skeleton nodes map to the
                         correct segment ID and if not will move them back into
                         the segment. This is potentially very slow!
    drop_soma_hairball : bool
                         If True, we will try to drop the hairball that is
                         typically created inside the soma.
    **kwargs
                Keyword arguments are passed on to ``fafbseg.merge_neuron``.

    Examples
    --------
    Import a FlyWire neuron:

    >>> _ = fafbseg.flywire.merge_flywire_neuron(id=720575940610453042,
    ...                                          target_instance=manual,
    ...                                          tag='WTCam')

    """
    if not sk:
        raise ImportError('Must install skeletor: pip3 install skeletor')

    vol = parse_volume(flywire_dataset)

    # Make sure this is a valid integer
    id = int(id)

    # Download the mesh
    mesh = vol.mesh.get(id, deduplicate_chunk_boundaries=False)[id]

    # Convert to neuron
    n_fw = skeletonize_neuron(mesh,
                              remove_soma_hairball=drop_soma_hairball,
                              dataset=flywire_dataset,
                              assert_id_match=assert_id_match)

    # Confirm
    viewer = navis.Viewer(title='Confirm skeletonization')
    # Make sure viewer is actually visible and cleared
    viewer.show()
    viewer.clear()
    # Add skeleton
    viewer.add(n_fw, color='r')

    msg = """
    Please carefully inspect the skeletonization of the FlyWire neuron.
    Hit ENTER to proceed if happy or CTRL-C to cancel.
    """

    # Add mesh last - otherwise it might mask out other objects despite alpha
    viewer.add(navis.MeshNeuron(mesh), color='w', alpha=.2)

    try:
        _ = input(msg)
    except KeyboardInterrupt:
        raise KeyboardInterrupt('Merge process aborted by user.')
    except BaseException:
        raise
    finally:
        viewer.close()

    # Xform to FAFB
    n_fafb = xform.flywire_to_fafb14(n_fw,
                                     on_fail='raise',
                                     coordinates='nm',
                                     inplace=False)
    mesh_fafb = xform.flywire_to_fafb14(tm.Trimesh(mesh.vertices, mesh.faces),
                                        on_fail='raise',
                                        coordinates='nm',
                                        inplace=False)

    # Heal neuron
    n_fafb = navis.heal_fragmented_neuron(n_fafb)

    # Merge neuron
    return merge_into_catmaid(n_fafb,
                              target_instance=target_instance,
                              tag=tag,
                              mesh=mesh_fafb,
                              **kwargs)