示例#1
0
def bound_mass_evolution(prop, output, max_time=None):
    plt.clf()
    times = nbody_tools.get_times(prop['simFileGRAVOUTPUT'])
    if (max_time):
        times = times[times < max_time]
    mass_dm = np.ones(len(times))
    mass_st = np.ones(len(times))
    for i, t in enumerate(times):
        data, centre = grab_snapshot(prop, t, with_centre=True)
        data = data_to_pandas(data)
        mass_dm[i] = np.sum(data.mass[data.dm == 1.])
        mass_st[i] = np.sum(data.mass[data.dm == 0.])
    plt.plot(times, mass_dm / mass_dm[0], ls='dotted', label='DM')
    plt.plot(times, mass_st / mass_st[0], ls='dashed', label='Stars')
    plt.plot(times, (mass_st + mass_dm) / (mass_dm[0] + mass_st[0]),
             color='k',
             label='Total')
    plt.xlabel(r'$t/\mathrm{Gyr}$')
    plt.ylabel(r'$M/M_\mathrm{init}$')
    plt.legend()
    plt.semilogy()
    plt.savefig(output, bbox_inches='tight')
示例#2
0
def shape_evolution(prop, output, max_time=None):
    plt.clf()
    times = nbody_tools.get_times(prop['simFileGRAVOUTPUT'])
    if (max_time):
        times = times[times < max_time]
    ba_dm = np.ones(len(times))
    ca_dm = np.ones_like(ba_dm)
    align_dm = np.ones_like(ba_dm)
    ba_st = np.ones(len(times))
    ca_st = np.ones_like(ba_st)
    align_st = np.ones_like(ba_st)
    for i, t in enumerate(times):
        data, centre = grab_snapshot(prop, t, with_centre=True)
        if not len(data):
            continue
        data = data_to_pandas(data)
        ba_st[i], ca_st[i], pr = moment_of_inertia_diagonalization(
            data[data.dm == 0.],
            # no offset
            0.,
            0.,
            0.,
            reduced=True)[:3]
        align_st[i] = np.abs(
            np.dot(pr, centre[:3]) / np.sqrt(np.sum(centre[:3]**2)))
        ba_dm[i], ca_dm[i], pr = moment_of_inertia_diagonalization(
            data[data.dm == 1.],
            # no offset
            0.,
            0.,
            0.,
            reduced=True)[:3]
        align_dm[i] = np.abs(
            np.dot(pr, centre[:3]) / np.sqrt(np.sum(centre[:3]**2)))
    # times/=nbody_tools.kms2kpcGyr
    return shape_evolution_plot(output, ba_dm, ca_dm, align_dm, ba_st, ca_st,
                                align_st, times)
示例#3
0
def all_evolution(prop, max_time=None, prune_radius=None):
    plt.clf()
    times = nbody_tools.get_times(prop['simFileGRAVOUTPUT'])
    if (max_time):
        times = times[times < max_time]

    mass_dm = np.ones(len(times))
    mass_st = np.ones(len(times))
    mass_dm_core = np.ones(len(times))
    mass_st_core = np.ones(len(times))
    mass_dm_core_init = np.ones(len(times))
    mass_st_core_init = np.ones(len(times))
    mass_dm_core_tilde = np.ones(len(times))
    mass_st_core_tilde = np.ones(len(times))
    ba_dm = np.ones(len(times))
    ca_dm = np.ones_like(ba_dm)
    align_dm = np.ones_like(ba_dm)
    ba_st = np.ones(len(times))
    ca_st = np.ones_like(ba_st)
    align_st = np.ones_like(ba_st)
    r_half = np.zeros_like(ba_st)
    eps = np.ones_like(ba_st)
    r_core = np.zeros_like(ba_st)
    eps_king = np.ones_like(ba_st)
    c_king = np.ones_like(ba_st)
    sig_maj = np.zeros_like(ba_st)
    sig_int = np.zeros_like(ba_st)
    sig_min = np.zeros_like(ba_st)
    sig_proj = np.zeros_like(ba_st)
    sig_proj_flat = np.zeros_like(ba_st)
    centre_x = np.zeros_like(ba_st)
    centre_y = np.zeros_like(ba_st)
    centre_z = np.zeros_like(ba_st)
    centre_vx = np.zeros_like(ba_st)
    centre_vy = np.zeros_like(ba_st)
    centre_vz = np.zeros_like(ba_st)
    eq_centre_s = np.zeros_like(ba_st)
    eq_centre_vlos = np.zeros_like(ba_st)

    for i, t in enumerate(times):
        data, centre = grab_snapshot(prop, t, with_centre=True)
        if not len(data):
            continue
        data = data_to_pandas(data)

        ba_dm[i], ca_dm[
            i], pmaj, pint, pmin = moment_of_inertia_diagonalization(
                data[data.dm == 1.],
                # no offset
                0.,
                0.,
                0.,
                reduced=True)
        align_dm[i] = np.abs(
            np.dot(pmaj, centre[:3]) / np.sqrt(np.sum(centre[:3]**2)))

        ba_st[i], ca_st[
            i], pmaj, pint, pmin = moment_of_inertia_diagonalization(
                data[data.dm == 0.],
                # no offset
                0.,
                0.,
                0.,
                reduced=True)
        align_st[i] = np.abs(
            np.dot(pmaj, centre[:3]) / np.sqrt(np.sum(centre[:3]**2)))
        xtil = np.sum(pmaj * data.values.T[1:4].T, axis=1)
        ytil = np.sum(pint * data.values.T[1:4].T, axis=1)
        ztil = np.sum(pmin * data.values.T[1:4].T, axis=1)
        if np.count_nonzero(data.dm == 0.):
            vmaj = np.sum(pmaj * data[data.dm == 0.].values.T[4:7].T, axis=1)
            vint = np.sum(pint * data[data.dm == 0.].values.T[4:7].T, axis=1)
            vmin = np.sum(pmin * data[data.dm == 0.].values.T[4:7].T, axis=1)
            vmaj -= np.sum(data.mass[data.dm == 0.] * vmaj) / np.sum(
                data.mass[data.dm == 0.])
            vint -= np.sum(data.mass[data.dm == 0.] * vint) / np.sum(
                data.mass[data.dm == 0.])
            vmin -= np.sum(data.mass[data.dm == 0.] * vmin) / np.sum(
                data.mass[data.dm == 0.])

            sig_maj[i] = np.sqrt(
                np.sum(data.mass[data.dm == 0.] * vmaj**2) /
                np.sum(data.mass[data.dm == 0.]))
            sig_int[i] = np.sqrt(
                np.sum(data.mass[data.dm == 0.] * vint**2) /
                np.sum(data.mass[data.dm == 0.]))
            sig_min[i] = np.sqrt(
                np.sum(data.mass[data.dm == 0.] * vmin**2) /
                np.sum(data.mass[data.dm == 0.]))

        mass_dm[i] = np.sum(data.mass[data.dm == 1.])
        mass_st[i] = np.sum(data.mass[data.dm == 0.])

        radii = np.sqrt(data.x**2 + data.y**2 + data.z**2)
        radii_tilde = np.sqrt(xtil**2 + (ytil / ba_st[i])**2 +
                              (ztil / ca_st[i])**2)

        mass_dm_core_init[i] = np.sum(data.mass[(data.dm == 1.)
                                                & (radii < prop['rs'])])
        mass_st_core_init[i] = np.sum(data.mass[(data.dm == 0.)
                                                & (radii < prop['rs'])])

        # data,centre = grab_snapshot(prop,t,with_centre=True,recentre_sim=False)
        # data = data_to_pandas(data)
        data_recentre = recentre(data.values[:, :7], centre=-np.copy(centre))
        for ii, nn in enumerate(['x', 'y', 'z', 'vx', 'vy', 'vz']):
            data[nn] = data_recentre[:, ii + 1]

        if np.count_nonzero(data.dm == 0.):
            results, xtmp, ytmp = nbody_tools.fit_surface_density(
                data[data.dm == 0.].values, centre=np.copy(centre))
            r_half[i] = results[0]
            eps[i] = results[1]
            results, xtmp, ytmp = nbody_tools.fit_surface_density(
                data[data.dm == 0.].values,
                centre=np.copy(centre),
                profile="King")
            r_core[i] = results[0]
            eps_king[i] = results[1]
            c_king[i] = results[-1]
            print '#######################'
            print 'King fit ##############'
            print r_core[i], c_king[i]
            print '#######################'
        mass_dm_core[i] = np.sum(data.mass[(data.dm == 1.)
                                           & (radii < r_half[i])])
        mass_st_core[i] = np.sum(data.mass[(data.dm == 0.)
                                           & (radii < r_half[i])])
        mass_dm_core_tilde[i] = np.sum(data.mass[(data.dm == 1.)
                                                 & (radii_tilde < r_half[i])])
        mass_st_core_tilde[i] = np.sum(data.mass[(data.dm == 0.)
                                                 & (radii_tilde < r_half[i])])

        ## Solar velocity doesn't matter here
        eq = np.array([
            aa_py.CartesianToGalactic(
                ii[1:7], np.array([8.2, 0., 0., 11.1, 240., 7.25]))
            for ii in data[data.dm == 0.].values
        ])
        eq_centre = aa_py.CartesianToGalactic(
            centre[:6], np.array([8.2, 0., 0., 11.1, 240., 7.25]))

        from scipy.optimize import minimize
        from scipy.misc import logsumexp

        def logl(p, x):
            if p[1] < 0. or p[3] < 0. or p[-1] < 0. or p[-1] > 1.:
                return np.inf
            return -np.sum(
                np.logaddexp(
                    -(x - p[0])**2 / 2. / p[1]**2 - .5 * np.log(p[1]**2) +
                    np.log(1. - p[-1]),
                    (-(x - p[2])**2 / 2. / p[3]**2 - .5 * np.log(p[3]**2) +
                     np.log(p[-1]))))

        if np.count_nonzero(data.dm == 0.):
            ## Changed this to see if it makes a difference
            vproj = eq.T[3] - eq_centre[3]
            vproj -= np.sum(data.mass[data.dm == 0.] * vproj) / np.sum(
                data.mass[data.dm == 0.])
            Rvec = centre[:3] - np.array([8.2, 0., 0.])
            Rvec /= np.sqrt(np.sum(Rvec**2))
            vprojR = data.vx * Rvec[0] + data.vy * Rvec[1] + data.vz * Rvec[2]
            vprojR = vprojR[data.dm == 0]
            vprojR -= np.sum(data.mass[data.dm == 0.] * vprojR) / np.sum(
                data.mass[data.dm == 0.])
            sig_proj[i] = minimize(
                logl, [0.05, sig_maj[i], 0.05, 2. * sig_maj[i], 0.2],
                args=(vproj, )).x[1]
            sig_proj_flat[i] = minimize(
                logl, [0.05, sig_maj[i], 0.05, 2. * sig_maj[i], 0.2],
                args=(vprojR, )).x[1]
            # sig_proj[i]=np.sqrt(np.sum(data.mass[data.dm==0.]*vproj**2)/np.sum(data.mass[data.dm==0.]))
            # print i, sig_maj[i], sig_min[i], sig_proj[i], centre, eq_centre, np.count_nonzero(data.dm==0.)

        print '#####################'
        print t, r_half[i], sig_proj[i]
        print '#####################'

        centre_x[i] = centre[0]
        centre_y[i] = centre[1]
        centre_z[i] = centre[2]
        centre_vx[i] = centre[3]
        centre_vy[i] = centre[4]
        centre_vz[i] = centre[5]
        eq_centre_s[i] = eq_centre[2]
        eq_centre_vlos[i] = eq_centre[3]
    # times/=nbody_tools.kms2kpcGyr

    names = [
        'times', 'mass_dm', 'mass_st', 'ba_dm', 'ca_dm', 'align_dm', 'ba_st',
        'ca_st', 'align_st', 'r_half', 'eps', 'r_core', 'eps_king', 'c_king',
        'sig_maj', 'sig_int', 'sig_min', 'sig_proj', 'sig_proj_flat',
        'mass_dm_core', 'mass_st_core', 'mass_dm_core_tilde',
        'mass_st_core_tilde', 'mass_dm_core_init', 'mass_st_core_init', 'x',
        'y', 'z', 'vx', 'vy', 'vz', 's', 'vlos'
    ]
    outputs = np.vstack(
        (times, mass_dm, mass_st, ba_dm, ca_dm, align_dm, ba_st, ca_st,
         align_st, r_half, eps, r_core, eps_king, c_king, sig_maj, sig_int,
         sig_min, sig_proj, sig_proj_flat, mass_dm_core, mass_st_core,
         mass_dm_core_tilde, mass_st_core_tilde, mass_dm_core_init,
         mass_st_core_init, centre_x, centre_y, centre_z, centre_vx, centre_vy,
         centre_vz, eq_centre_s, eq_centre_vlos))

    return pd.DataFrame(outputs.T, columns=names)
示例#4
0
propermotions = [caldwell_propermotion, [0., 0.], [0., 0.17]]
rot = [[84., 208., 0.]]
veldisp = 10.

if __name__ == '__main__':

    for p in list(itertools.product(*[segregation, propermotions, shapes])):
        print p
        simproperties = generate_simproperties(SegregationParameter=p[0],
                                               propermotion=p[1],
                                               flattening=p[2],
                                               fixed_veldisp=veldisp)

        generate_plum_in_nfw(simproperties, nmax=20, int_step_frac=50.)

        times = nbody_tools.get_times(simproperties['simFileGRAVOUTPUT'])

        # compare_1d_profiles_2(simproperties,
        #                       simproperties['sim_name'] + '1dprof.pdf',
        #                       times=[0., times[-1]])
        # compare_1d_sigmar_profiles_2(simproperties,
        #                              simproperties['sim_name'] +
        #                              '1dsrprof.pdf',
        #                              times=[0., times[-1]], sigmayaxis=100.)

        # shape_evolution(simproperties,
        #                 simproperties['sim_name'] + 'shape.pdf',
        #                 max_time=times[-1])
        # bound_mass_evolution(simproperties,
        #                      simproperties['sim_name'] + 'mass.pdf',
        #                      max_time=times[-1])